Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Lett ; 49(10): 2561-2564, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748105

RESUMO

A strong-coupling helical fiber needle (HFN) is proposed and demonstrated for the realization of bandwidth-enhanced broadband optical vortex beam (OVB) generation. The HFN is based on a single mode fiber and operates at the dispersion-turning-point (DTP) of the lowest radial order of the cladding mode (i.e., LP11) but with a remarkably high mode coupling efficiency. By utilizing this novel, to the best of our knowledge, HFN, successful generation of the first-order OVB with an impressive bandwidth up to 556 nm at -10 dB and a center wavelength of ∼1570 nm has been achieved. This represents the broadest bandwidth demonstrated among all fiber grating-based OVB generators to date. The proposed HFN-based OVB generator exhibits a relatively compact size, ultra-wide bandwidth, and customizable center wavelength, making it highly promising for applications in optical vortex-based endoscopic imaging as well as particle detection and manipulation.

2.
Appl Opt ; 63(8): 1982-1990, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38568638

RESUMO

Currently, the method of establishing the correspondence between the flame light field image and the temperature field by deep learning is widely used. Based on convolutional neural networks (CNNs), the reconstruction accuracy has been improved by increasing the depth of the network. However, as the depth of the network increases, it will lead to gradient explosion and network degradation. To further improve the reconstruction accuracy of the flame temperature field, this paper proposes an ES-ResNet18 model, in which SoftPool is used instead of MaxPool to preserve feature information more completely and efficient channel attention (ECA) is introduced in the residual block to reassign more weights to feature maps of critical channels. The reconstruction results of our method were compared with the CNN model and the original ResNet18 network. The results show that the average relative error and the maximum relative error of the temperature field reconstructed by the ES-ResNet18 model are 0.0203% and 0.1805%, respectively, which are reduced by one order of magnitude compared to the CNN model. Compared to the original ResNet18 network, they have decreased by 17.1% and 43.1%, respectively. Adding Gaussian noise to the flame light field images, when the standard deviation exceeds 0.03, the increase in reconstruction error of the ES-ResNet18 model is lower than that of ResNet18, demonstrating stronger anti-noise performance.

3.
Opt Express ; 31(26): 43477-43489, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178440

RESUMO

A new method enabling to provide an on-demand flat-top wideband orbital angular momentum (OAM) mode converter is proposed and experimentally demonstrated, which is based on utilization of a cladding-etched helical long-period fiber grating (CEHLPG). By appropriately selecting the grating period and precisely controlling the diameter of the CEHLPG in-situ, both the radial order and central wavelength of the flat-top band for the generated OAM mode can be flexibly tailored according to specific requirements. As typical examples, the first azimuthal order OAM modes with a flat-top bandwidth of 95 nm at -20 dB, a central operating wavelength of ∼1500 nm, and the radial-orders of 9, 8, 5, and 2, respectively, have been demonstrated consecutively. The proposed method provides an excellent flexibility and robustness in controlling both the radial order and the central wavelength of the resulting flat-top wideband OAM mode conversion, which may support a variety of practical optical vortex applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA