Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(30): e2403460121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008666

RESUMO

Autonomous nanorobots represent an advanced tool for precision therapy to improve therapeutic efficacy. However, current nanorobotic designs primarily rely on inorganic materials with compromised biocompatibility and limited biological functions. Here, we introduce enzyme-powered bacterial outer membrane vesicle (OMV) nanorobots. The immobilized urease on the OMV membrane catalyzes the decomposition of bioavailable urea, generating effective propulsion for nanorobots. This OMV nanorobot preserves the unique features of OMVs, including intrinsic biocompatibility, immunogenicity, versatile surface bioengineering for desired biofunctionalities, capability of cargo loading and protection. We present OMV-based nanorobots designed for effective tumor therapy by leveraging the membrane properties of OMVs. These involve surface bioengineering of robotic body with cell-penetrating peptide for tumor targeting and penetration, which is further enhanced by active propulsion of nanorobots. Additionally, OMV nanorobots can effectively safeguard the loaded gene silencing tool, small interfering RNA (siRNA), from enzymatic degradation. Through systematic in vitro and in vivo studies using a rodent model, we demonstrate that these OMV nanorobots substantially enhanced siRNA delivery and immune stimulation, resulting in the utmost effectiveness in tumor suppression when juxtaposed with static groups, particularly evident in the orthotopic bladder tumor model. This OMV nanorobot opens an inspiring avenue to design advanced medical robots with expanded versatility and adaptability, broadening their operation scope in practical biomedical domains.


Assuntos
Membrana Externa Bacteriana , Animais , Humanos , Membrana Externa Bacteriana/metabolismo , Camundongos , Robótica/métodos , Urease/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
2.
Small ; 19(42): e2301489, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37300342

RESUMO

Motile microrobots open a new realm for disease treatment. However, the concerns of possible immune elimination, targeted capability and limited therapeutic avenue of microrobots constrain its practical biomedical applications. Herein, a biogenic macrophage-based microrobot loaded with magnetic nanoparticles and bioengineered bacterial outer membrane vesicles (OMVs), capable of magnetic propulsion, tumor targeting, and multimodal cancer therapy is reported. Such cell robots preserve intrinsic properties of macrophages for tumor suppression and targeting, and bioengineered OMVs for antitumor immune regulation and fused anticancer peptides. Cell robots display efficient magnetic propulsion and directional migration in the confined space. In vivo tests show that cell robots can accumulate at the tumor site upon magnetic manipulation, coupling with tumor tropism of macrophages to greatly improve the efficacy of its multimodal therapy, including tumor inhibition of macrophages, immune stimulation, and antitumor peptides of OMVs. This technology offers an attractive avenue to design intelligent medical microrobots with remote manipulation and multifunctional therapy capabilities for practical precision treatment.


Assuntos
Bioensaio , Neoplasias , Humanos , Terapia Combinada , Macrófagos , Neoplasias/terapia , Peptídeos
3.
Nanomaterials (Basel) ; 14(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607129

RESUMO

Artificial nanorobots have emerged as promising tools for a wide range of biomedical applications, including biosensing, detoxification, and drug delivery. Their unique ability to navigate confined spaces with precise control extends their operational scope to the cellular or subcellular level. By combining tailored surface functionality and propulsion mechanisms, nanorobots demonstrate rapid penetration of cell membranes and efficient internalization, enhancing intracellular delivery capabilities. Moreover, their robust motion within cells enables targeted interactions with intracellular components, such as proteins, molecules, and organelles, leading to superior performance in intracellular biosensing and organelle-targeted cargo delivery. Consequently, nanorobots hold significant potential as miniaturized surgeons capable of directly modulating cellular dynamics and combating metastasis, thereby maximizing therapeutic outcomes for precision therapy. In this review, we provide an overview of the propulsion modes of nanorobots and discuss essential factors to harness propulsive energy from the local environment or external power sources, including structure, material, and engine selection. We then discuss key advancements in nanorobot technology for various intracellular applications. Finally, we address important considerations for future nanorobot design to facilitate their translation into clinical practice and unlock their full potential in biomedical research and healthcare.

4.
Sci Adv ; 9(23): eadh1736, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294758

RESUMO

Nanorobotic manipulation to access subcellular organelles remains unmet due to the challenge in achieving intracellular controlled propulsion. Intracellular organelles, such as mitochondria, are an emerging therapeutic target with selective targeting and curative efficacy. We report an autonomous nanorobot capable of active mitochondria-targeted drug delivery, prepared by facilely encapsulating mitochondriotropic doxorubicin-triphenylphosphonium (DOX-TPP) inside zeolitic imidazolate framework-67 (ZIF-67) nanoparticles. The catalytic ZIF-67 body can decompose bioavailable hydrogen peroxide overexpressed inside tumor cells to generate effective intracellular mitochondriotropic movement in the presence of TPP cation. This nanorobot-enhanced targeted drug delivery induces mitochondria-mediated apoptosis and mitochondrial dysregulation to improve the in vitro anticancer effect and suppression of cancer cell metastasis, further verified by in vivo evaluations in the subcutaneous tumor model and orthotopic breast tumor model. This nanorobot unlocks a fresh field of nanorobot operation with intracellular organelle access, thereby introducing the next generation of robotic medical devices with organelle-level resolution for precision therapy.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Estruturas Metalorgânicas/farmacologia , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Nanopartículas/ultraestrutura , Mitocôndrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA