Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 318, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932852

RESUMO

BACKGROUND: Immunologically impaired individuals respond poorly to vaccines, highlighting the need for additional strategies to protect these vulnerable populations from COVID-19. While monoclonal antibodies (mAbs) have emerged as promising tools to manage infectious diseases, the transient lifespan of neutralizing mAbs in patients limits their ability to confer lasting, passive prophylaxis from SARS-CoV-2. Here, we attempted to solve this problem by combining cell and mAb engineering in a way that provides durable immune protection against viral infection using safe and universal cell therapy. METHODS: Mouse embryonic stem cells equipped with our FailSafe™ and induced allogeneic cell tolerance technologies were engineered to express factors that potently neutralize SARS-CoV-2, which we call 'neutralizing biologics' (nBios). We subcutaneously transplanted the transgenic cells into mice and longitudinally assessed the ability of the cells to deliver nBios into circulation. To do so, we quantified plasma nBio concentrations and SARS-CoV-2 neutralizing activity over time in transplant recipients. Finally, using similar cell engineering strategies, we genetically modified FailSafe™ human-induced pluripotent stem cells to express SARS-CoV-2 nBios. RESULTS: Transgenic mouse embryonic stem cells engineered for safety and allogeneic-acceptance can secrete functional and potent SARS-CoV-2 nBios. As a dormant, subcutaneous tissue, the transgenic cells and their differentiated derivatives long-term deliver a supply of protective nBio titers in vivo. Moving toward clinical relevance, we also show that human-induced pluripotent stem cells, similarly engineered for safety, can secrete highly potent nBios. CONCLUSIONS: Together, these findings show the promise and potential of using 'off-the-shelf' cell products that secrete neutralizing antibodies for sustained protective immunity against current and future viral pathogens of public health significance.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , SARS-CoV-2 , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunização Passiva , Anticorpos Monoclonais
2.
Nat Biomed Eng ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996616

RESUMO

The immunogenicity of transplanted allogeneic cells and tissues is a major hurdle to the advancement of cell therapies. Here we show that the overexpression of eight immunomodulatory transgenes (Pdl1, Cd200, Cd47, H2-M3, Fasl, Serpinb9, Ccl21 and Mfge8) in mouse embryonic stem cells (mESCs) is sufficient to immunologically 'cloak' the cells as well as tissues derived from them, allowing their survival for months in outbred and allogeneic inbred recipients. Overexpression of the human orthologues of these genes in human ESCs abolished the activation of allogeneic human peripheral blood mononuclear cells and their inflammatory responses. Moreover, by using the previously reported FailSafe transgene system, which transcriptionally links a gene essential for cell division with an inducible and cell-proliferation-dependent kill switch, we generated cloaked tissues from mESCs that served as immune-privileged subcutaneous sites that protected uncloaked allogeneic and xenogeneic cells from rejection in immune-competent hosts. The combination of cloaking and FailSafe technologies may allow for the generation of safe and allogeneically accepted cell lines and off-the-shelf cell products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA