Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(9): 107688, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39159820

RESUMO

Ribonucleotides in DNA cause several types of genome instability and can be removed by ribonucleotide excision repair (RER) that is finalized by DNA ligase 1 (LIG1). However, the mechanism by which LIG1 discriminates the RER intermediate containing a 5'-RNA-DNA lesion generated by RNase H2-mediated cleavage of ribonucleotides at atomic resolution remains unknown. Here, we determine X-ray structures of LIG1/5'-rG:C at the initial step of ligation where AMP is bound to the active site of the ligase and uncover a large conformational change downstream the nick resulting in a shift at Arg(R)871 residue in the Adenylation domain of the ligase. Furthermore, we demonstrate a diminished ligation of the nick DNA substrate with a 5'-ribonucleotide in comparison to an efficient end joining of the nick substrate with a 3'-ribonucleotide by LIG1. Finally, our results demonstrate that mutations at the active site residues of the ligase and LIG1 disease-associated variants significantly impact the ligation efficiency of RNA-DNA heteroduplexes harboring "wrong" sugar at 3'- or 5'-end of nick. Collectively, our findings provide a novel atomic insight into proficient sugar discrimination by LIG1 during the processing of the most abundant form of DNA damage in cells, genomic ribonucleotides, during the initial step of the RER pathway.


Assuntos
DNA Ligase Dependente de ATP , Reparo do DNA , DNA , RNA , DNA Ligase Dependente de ATP/metabolismo , DNA Ligase Dependente de ATP/química , DNA Ligase Dependente de ATP/genética , Humanos , DNA/metabolismo , DNA/química , RNA/metabolismo , RNA/química , RNA/genética , Ribonucleotídeos/metabolismo , Ribonucleotídeos/química , Domínio Catalítico , Cristalografia por Raios X , Ribonuclease H/metabolismo , Ribonuclease H/química , Reparo por Excisão
2.
J Biol Chem ; 300(6): 107355, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718860

RESUMO

Base excision repair (BER) requires a tight coordination between the repair enzymes through protein-protein interactions and involves gap filling by DNA polymerase (pol) ß and subsequent nick sealing by DNA ligase (LIG) 1 or LIGIIIα at the downstream steps. Apurinic/apyrimidinic-endonuclease 1 (APE1), by its exonuclease activity, proofreads 3' mismatches incorporated by polß during BER. We previously reported that the interruptions in the functional interplay between polß and the BER ligases result in faulty repair events. Yet, how the protein interactions of LIG1 and LIGIIIα could affect the repair pathway coordination during nick sealing at the final steps remains unknown. Here, we demonstrate that LIGIIIα interacts more tightly with polß and APE1 than LIG1, and the N-terminal noncatalytic region of LIG1 as well as the catalytic core and BRCT domain of LIGIIIα mediate interactions with both proteins. Our results demonstrated less efficient nick sealing of polß nucleotide insertion products in the absence of LIGIIIα zinc-finger domain and LIG1 N-terminal region. Furthermore, we showed a coordination between APE1 and LIG1/LIGIIIα during the removal of 3' mismatches from the nick repair intermediate on which both BER ligases can seal noncanonical ends or gap repair intermediate leading to products of single deletion mutagenesis. Overall results demonstrate the importance of functional coordination from gap filling by polß coupled to nick sealing by LIG1/LIGIIIα in the presence of proofreading by APE1, which is mainly governed by protein-protein interactions and protein-DNA intermediate communications, to maintain repair efficiency at the downstream steps of the BER pathway.


Assuntos
DNA Ligase Dependente de ATP , DNA Polimerase beta , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA Ligase Dependente de ATP/metabolismo , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/química , DNA Polimerase beta/metabolismo , DNA Polimerase beta/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Reparo por Excisão , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica
3.
Mol Carcinog ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136583

RESUMO

Xenotropic and polytropic retrovirus receptor 1 (XPR1) is the only known transporter associated with Pi efflux in mammals, and its impact on tumor progression is gradually being revealed. However, the role of XPR1 in hepatocellular carcinoma (HCC) is unknown. A bioinformatics screen for the phosphate exporter XPR1 was performed in HCC patients. The expression of XPR1 in clinical specimens was analyzed using quantitative real-time PCR, Western blot analysis, and immunohistochemical assays. Knockdown of the phosphate exporter XPR1 was performed by shRNA transfection to investigate the cellular phenotype and phosphate-related cytotoxicity of the Huh7 and HLF cell lines. In vivo tests were conducted to investigate the tumorigenicity of HCC cells xenografted into immunocompromised mice after silencing XPR1. Compared with that in paracancerous tissue, XPR1 expression in HCC tissues was markedly upregulated. High XPR1 expression significantly correlated with poor patient survival. Silencing of XPR1 leads to decreased proliferation, migration, invasion, and colony formation in HCC cells. Mechanistically, knockdown of XPR1 causes an increase in intracellular phosphate levels; mitochondrial dysfunction characterized by reduced mitochondrial membrane potential and adenosine triphosphate levels; increased reactive oxygen species levels; abnormal mitochondrial morphology; and downregulation of key mitochondrial fusion, fission, and inner membrane genes. This ultimately results in mitochondria-dependent apoptosis. These findings reveal the prognostic value of XPR1 in HCC progression and, more importantly, suggest that XPR1 might be a potential therapeutic target.

4.
J Vasc Interv Radiol ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39428064

RESUMO

PURPOSE: To determine how low inorganic phosphate stress (LIPS) induced by sevelamer transartieral embolization (S-TAE) affects immune regulation and angiogenesis in hepatocellular carcinoma (HCC). MATERIAL AND METHODS: Transcatheter arterial embolization (TAE) using conventional lipiodol plus Poly (vinyl alcohol) (PVA) microsphere and S-TAE were conducted on a McA-RH7777 orthotopic liver tumor model in rats, followed by the assessment of alterations in immunity- and angiogenesis-related factors. The cells were cultured under hypoxic conditions and stimulated with LIPS to analyze the modulation of programmed cell death 1 ligand 1 (PD-L1), vascular endothelial growth factor (VEGFα), and transforming growth factor-ß1 (TGF-ß1) expression through Western blotting, qRT‒PCR, and immunofluorescence assays. Cell migratory capacity and angiogenesis were also evaluated. RESULTS: TAE increased the expression of neoplastic PD-L1 and VEGFα, and S-TAE, which depletes intratumoral Pi, downregulated the expression of PD-L1, VEGFα and TGF-ß1, and augmented the infiltration of CD8+ T-cells, thereby inhibited angiogenesis and activated anticancer immunity. In vitro, the study demonstrated that LIPS inhibits hypoxia-induced upregulation of PD-L1 expression and the HIF-1α/VEGFα axis. Moreover, LIPS inhibited the tube formation ability of Human Umbilical Vein Endothelial Cells (HUVECs) and the migration ability and epithelial-mesenchymal transition (EMT) process of cancer cells under hypoxic conditions. CONCLUSIONS: S-TAE inhibited the expression of PD-L1 and VEGFα, thereby activated anti-tumor immunity and suppressing tumor angiogenesis. All the findings reveal the biology of tumors under low Pi stress and suggest the potential therapeutic value of S-TAE.

5.
Bioorg Chem ; 148: 107406, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728907

RESUMO

Bacterial infections are the second leading cause of death worldwide, and the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens exacerbate the threat crisis. Carbohydrates participate in bacterial infection, drug resistance and the process of host immune regulation. Numerous antimicrobials derived from carbohydrates or contained carbohydrate scaffolds that are conducive to an increase in pathogenic bacteria targeting, the physicochemical properties and druggability profiles. In the paper, according to the type and number of sugar residues contained in antimicrobial molecules collected from the literatures ranging from 2014 to 2024, the antimicrobial activities, action mechanisms and structure-activity relationships were delineated and summarized, for purpose to provide the guiding template to select the type and size of sugars in the design of oligosaccharide-based antimicrobials to fight the looming antibiotic resistance crisis.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Oligossacarídeos , Relação Estrutura-Atividade , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Estrutura Molecular , Bactérias/efeitos dos fármacos , Humanos , Monossacarídeos/química , Monossacarídeos/farmacologia , Dissacarídeos/química , Dissacarídeos/farmacologia
6.
J Cell Mol Med ; 27(19): 2906-2921, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37471521

RESUMO

Numerous studies have shown the positive correlation between high levels of Pi and tumour progression. A critical goal of macrophage-based cancer therapeutics is to reduce anti-inflammatory macrophages (M2) and increase proinflammatory antitumour macrophages (M1). This study aimed to investigate the relationship between macrophage polarization and low-Pi stress. First, the spatial populations of M2 and M1 macrophages in 22 HCC patient specimens were quantified and correlated with the local Pi concentration. The levels of M2 and M1 macrophage markers expressed in the peritumour area were higher than the intratumour levels, and the expression of M2 markers was positively correlated with Pi concentration. Next, monocytes differentiated from THP-1 cells were polarized against different Pi concentrations to investigate the activation or silencing of the expression of p65, IκB-α and STAT3 as well as their phosphorylation. Results showed that low-Pi stress irreversibly repolarizes tumour-associated macrophages (TAMs) towards the M1 phenotype by silencing stat6 and activating p65. Moreover, HepG-2 and SMCC-7721 cells were cultured in conditioned medium to investigate the innate anticancer immune effects on tumour progression. Both cancer cell lines showed reduced proliferation, migration and invasion, as epithelial-mesenchymal transition (EMT) was inactivated. In vivo therapeutic effect on the innate and adaptive immune processes was validated in a subcutaneous liver cancer model by the intratumoural injection of sevelamer. Tumour growth was significantly inhibited by the partial deprivation of intratumoural Pi as the tumour microenvironment under low-Pi stress is more immunostimulatory. The anticancer immune response, activated by low-Pi stress, suggests a new macrophage-based immunotherapeutic modality.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Eur Radiol ; 33(12): 9213-9222, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37410109

RESUMO

OBJECTIVES: To assess the association of ectopic fat deposition in the liver and pancreas quantified by Dixon magnetic resonance imaging (MRI) with insulin sensitivity and ß-cell function in patients with central obesity. MATERIALS AND METHODS: A cross-sectional study of 143 patients with central obesity with normal glucose tolerance (NGT), prediabetes (PreD), and untreated type 2 diabetes mellitus (T2DM) was conducted between December 2019 and March 2022. All participants underwent routine medical history taking, anthropometric measurements, and laboratory tests, including a standard glucose tolerance test to quantify insulin sensitivity and ß-cell function. The fat content in the liver and pancreas was measured with MRI using the six-point Dixon technique. RESULTS: Patients with T2DM and PreD had a higher liver fat fraction (LFF) than those with NGT, while those with T2DM had a higher pancreatic fat fraction (PFF) than those with PreD and NGT. LFF was positively correlated with homeostatic model assessment of insulin resistance (HOMA-IR), while PFF was negatively correlated with homeostatic model assessment of insulin secretion (HOMA-ß). Furthermore, using a structured equation model, we found LFF and PFF to be positively associated with glycosylated hemoglobin via HOMA-IR and HOMA-ß, respectively. CONCLUSIONS: In patients with central obesity, the effects of LFF and PFF on glucose metabolism. were associated with HOMA-IR and HOMA-ß, respectively. Ectopic fat storage in the liver and pancreas quantified by MR Dixon imaging potentially plays a notable role in the onset ofT2DM. CLINICAL RELEVANCE STATEMENT: We highlight the potential role of ectopic fat deposition in the liver and pancreas in the development of type 2 diabetes in patients with central obesity, providing valuable insights into the pathogenesis of the disease and potential targets for intervention. KEY POINTS: • Ectopic fat deposition in the liver and pancreas is associated with T2DM. • T2DM and prediabetes patients had higher liver and pancreatic fat fractions than normal individuals. • The results provide valuable insights into pathogenesis of T2DM and potential targets for intervention.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Estado Pré-Diabético , Humanos , Resistência à Insulina/fisiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Obesidade Abdominal/complicações , Obesidade Abdominal/diagnóstico por imagem , Estudos Transversais , Pâncreas/patologia , Fígado/patologia , Obesidade/complicações , Obesidade/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Glicemia/metabolismo
8.
Bioorg Med Chem ; 83: 117232, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940608

RESUMO

α-Mangostin (α-MG) has demonstrated to display potent activities against Gram-positive bacterial. However, the contribution of phenolic hydroxyl groups of α-MG to the antibacterial activity remains obscure, severely hampering selection of structure modification to develop more potential α-MG-based anti-bacterial derivatives. Herein, twenty-one α-MG derivatives are designed, synthesized and evaluated for the antibacterial activities. The structure activity relationships (SARs) reveal that the contribution of the phenolic groups ranks as C3 > C6 > C1, and the phenolic hydroxyl group at C3 is essential to the antibacterial activity. Of note, compared to the parent compound α-MG, 10a with one acetyl at C1 exhibits the higher safety profiles due to its higher selectivity and no hemolysis, and the more potent antibacterial efficacy in an animal skin abscess model. Our evidences further present that, in comparison with α-MG, 10a has a stronger ability in depolarizing membrane potentials and leads to more leakage of bacterial proteins, consistent with the results observed by transmission electron microscopy (TEM). Transcriptomics analysis demonstrates those observations possibly relate to disturbed synthesis of proteins participating in the biological process of membrane permeability and integrity. Collectively, our findings provide a valuable insight for developing α-MG-based antibacterial agents with little hemolysis and new action mechanism via structural modifications at C1.


Assuntos
Antibacterianos , Xantonas , Animais , Antibacterianos/química , Microscopia Eletrônica de Transmissão , Bactérias , Relação Estrutura-Atividade , Fenóis , Xantonas/química , Testes de Sensibilidade Microbiana
9.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614183

RESUMO

DNA double-strand breaks (DSBs) are the most perilous and harmful type of DNA damage and can cause tumorigenesis or cell death if left repaired with an error or unrepaired. RadD, a member of the SF2 family, is a recently discovered DNA repair protein involved in the repair of DSBs after radiation or chemical damage. However, the function of RadD in DNA repair remains unclear. Here, we determined the crystal structures of RadD/ATPγS and RadD/ATP complexes and revealed the novel mechanism of RadD binding to DNA and ATP hydrolysis with biochemical data. In the RadD catalytic center, the Gly34 and Gly36 on the P-loop are key residues for ATP binding besides the conserved amino acids Lys37 and Arg343 in the SF2 family. If any of them mutate, then RadD loses ATPase activity. Asp117 polarizes the attacking water molecule, which then starts a nucleophilic reaction toward γ-phosphate, forming the transition state. Lys68 acts as a pocket switch to regulate substrate entry and product release. We revealed that the C-terminal peptide of single-stranded DNA-binding protein (SSB) binds the RadD C-terminal domain (CTD) and promotes the RadD ATPase activity. Our mutagenesis studies confirmed that the residues Arg428 on the zinc finger domain (ZFD) and Lys488 on the CTD of RadD are the key sites for binding branched DNA. Using the Coot software combined with molecular docking, we propose a RadD-binding DNA model for the DNA damage repair process.


Assuntos
Adenosina Trifosfatases , Proteínas de Escherichia coli , Escherichia coli , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica
10.
J Biol Chem ; 297(3): 101025, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339737

RESUMO

The base excision repair (BER) pathway involves gap filling by DNA polymerase (pol) ß and subsequent nick sealing by ligase IIIα. X-ray cross-complementing protein 1 (XRCC1), a nonenzymatic scaffold protein, assembles multiprotein complexes, although the mechanism by which XRCC1 orchestrates the final steps of coordinated BER remains incompletely defined. Here, using a combination of biochemical and biophysical approaches, we revealed that the polß/XRCC1 complex increases the processivity of BER reactions after correct nucleotide insertion into gaps in DNA and enhances the handoff of nicked repair products to the final ligation step. Moreover, the mutagenic ligation of nicked repair intermediate following polß 8-oxodGTP insertion is enhanced in the presence of XRCC1. Our results demonstrated a stabilizing effect of XRCC1 on the formation of polß/dNTP/gap DNA and ligase IIIα/ATP/nick DNA catalytic ternary complexes. Real-time monitoring of protein-protein interactions and DNA-binding kinetics showed stronger binding of XRCC1 to polß than to ligase IIIα or aprataxin, and higher affinity for nick DNA with undamaged or damaged ends than for one nucleotide gap repair intermediate. Finally, we demonstrated slight differences in stable polß/XRCC1 complex formation, polß and ligase IIIα protein interaction kinetics, and handoff process as a result of cancer-associated (P161L, R194W, R280H, R399Q, Y576S) and cerebellar ataxia-related (K431N) XRCC1 variants. Overall, our findings provide novel insights into the coordinating role of XRCC1 and the effect of its disease-associated variants on substrate-product channeling in multiprotein/DNA complexes for efficient BER.


Assuntos
DNA Ligase Dependente de ATP/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , DNA Polimerase beta/metabolismo , Reparo do DNA , Humanos , Cinética , Ligação Proteica , Ressonância de Plasmônio de Superfície
11.
J Biol Chem ; 296: 100427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33600799

RESUMO

DNA ligase I (LIG1) completes the base excision repair (BER) pathway at the last nick-sealing step after DNA polymerase (pol) ß gap-filling DNA synthesis. However, the mechanism by which LIG1 fidelity mediates the faithful substrate-product channeling and ligation of repair intermediates at the final steps of the BER pathway remains unclear. We previously reported that pol ß 8-oxo-2'-deoxyribonucleoside 5'-triphosphate insertion confounds LIG1, leading to the formation of ligation failure products with a 5'-adenylate block. Here, using reconstituted BER assays in vitro, we report the mutagenic ligation of pol ß 8-oxo-2'-deoxyribonucleoside 5'-triphosphate insertion products and an inefficient ligation of pol ß Watson-Crick-like dG:T mismatch insertion by the LIG1 mutant with a perturbed fidelity (E346A/E592A). Moreover, our results reveal that the substrate discrimination of LIG1 for the nicked repair intermediates with preinserted 3'-8-oxodG or mismatches is governed by mutations at both E346 and E592 residues. Finally, we found that aprataxin and flap endonuclease 1, as compensatory DNA-end processing enzymes, can remove the 5'-adenylate block from the abortive ligation products harboring 3'-8-oxodG or the 12 possible noncanonical base pairs. These findings contribute to the understanding of the role of LIG1 as an important determinant in faithful BER and how a multiprotein complex (LIG1, pol ß, aprataxin, and flap endonuclease 1) can coordinate to prevent the formation of mutagenic repair intermediates with damaged or mismatched ends at the downstream steps of the BER pathway.


Assuntos
DNA Ligase Dependente de ATP/metabolismo , DNA Polimerase beta/metabolismo , Reparo do DNA/fisiologia , DNA/metabolismo , DNA Ligase Dependente de ATP/fisiologia , Replicação do DNA , Endonucleases Flap/metabolismo , Humanos , Mutagênese , Mutagênicos , Mutação/genética , Nucleotídeos/metabolismo , Oxirredução
12.
Bioorg Med Chem Lett ; 60: 128586, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085721

RESUMO

Menadione (VK3) is used as a powerful inducer of cellular reactive oxygen species (ROS) for many years and displays the high anti-cancer activities in vivo. Recently, the development of mitochondria-targeted drugs has been more and more appreciated. Here, the thirteen derivatives of VK3 were synthesized, which could localize in mitochondria by the triphenylphosphonium (TPP) cation or the nitrogen-based cation. The results of cytotoxicity from six human cancer cell lines showed that the targeted compounds T1-T13 displayed higher activity than VK3 with the average IC50 value around 1 µM. The results of cytotoxicity indicated that the substitutes on C-2, the linear alkyl chains on C-3 and cation moiety all could affect the cytotoxicity. The mechanistic studies showed that five representative compounds (T2, T3, T5, T8 and T13) could localize in cellular mitochondria, elicit ROS burst and collapse mitochondrial membrane potential (ΔΨm), leading to cytochrome C release and apoptosis in MGC-803 cells. Particularly, they could obviously inhibit mitochondrial thioredoxin reductase TrxR2 expression, thus leading to aggravate cellular oxidative stress.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Tiorredoxina Redutase 2/antagonistas & inibidores , Vitamina K 3/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Cátions/síntese química , Cátions/química , Cátions/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mitocôndrias/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Tiorredoxina Redutase 2/metabolismo , Vitamina K 3/síntese química , Vitamina K 3/química
13.
Nanotechnology ; 33(35)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35616242

RESUMO

Decades have witnessed rapid progress of polymeric materials for vascular embolic or chemoembolic applications. Commercially available polymeric embolics range from gelatin foam to synthetic polymers such as poly(vinyl alcohol). Current systems under investigation include tunable, bioresorbable microspheres composed of chitosan or poly(ethylene glycol) derivatives,in situgelling liquid embolics with improved safety profiles, and radiopaque embolics that are trackablein vivo. In this paper, we proposed a concept of 'responsive embolization'. Sevelamer, clinically proved as an inorganic phosphate binder, was ground into nanoparticles. Sevelamer nanoparticle is highly mobile and capable of swelling and aggregating in the presence of endogenous inorganic phosphate, thereby effectively occluding blood flow in the vessel as it was administered as an embolic agent for interventional therapy. Moreover, citrated sevelamer nanoparticles delayed the aggregation, preferable to penetrate deeply into the capillary system. On the rabbit VX2 liver cancer model, both sevelamer particles aggregates occlude the tumor feeding artery, but backflow was found for the pristine one, thereby citrate passivation of sevelamer nanoparticles endows it have potential from 'bench to bedside' as a new type of vascular embolic.


Assuntos
Embolização Terapêutica , Nanopartículas , Animais , Microesferas , Fosfatos , Polímeros , Coelhos , Sevelamer
14.
Bioorg Med Chem Lett ; 33: 127750, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340662

RESUMO

Targeting specific mitochondrial alterations to kill cancer cells without affecting their normal counterparts emerges as a feasible strategy. Coumarin derivatives have demonstrated the potential anti-breast cancer activities. By coupling coumarin-3-carboxamide derivatives with mitochondria carrier triphenylphosphonium, mitocoumarins 15a-c were produced and tested as the anti-breast cancer fluorescence agents. Among them, 15b as the amide-based drug potently suppressed the cell growth in MCF-7, MDA-231, SK-BR-3 breast cancer cells with the IC50 values from 3.0 to 4.1 µM, including the lower cytotoxicity to normal MCF-10A cells with the IC50 value around 45.30 ± 2.45 µM. In mechanistic study for 15b in MDA-MB-231 cells, it could localize in mitochondria to elicit ROS burst and collapse Δψm. Besides, it could deplete GSH by an irreversible alkylation process and moderately inhibit mitochondrial thioredoxin reductase TrxR2, thus leading to aggravate cellular oxidative stress. This study reported 15b might be useful for the further development into a mitochondria-targeted anti-triple negative breast cancer drug.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cumarínicos/farmacologia , Corantes Fluorescentes/farmacologia , Mitocôndrias/efeitos dos fármacos , Tiorredoxina Redutase 2/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiorredoxina Redutase 2/metabolismo
15.
Biochem Biophys Res Commun ; 526(2): 512-518, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32245620

RESUMO

The post-transcriptional regulation of gene expression plays an important role in many essential biological processes. The RNA decapping enzyme Dcp2 is a crucial enzyme involved in RNA degradation. Dcp2 proteins are highly expressed in the testis and brain in adult mice. This study aimed to investigate the in vivo functions of Dcp2. An inducible Dcp2 knockout mouse model was established. No obvious health abnormalities were observed after postnatal global deletion of Dcp2 in male mice. However, Dcp2-deleted male mice were infertile and showed Sertoli cell vacuolization and germ cell degeneration. Dcp2 deletion resulted in testicular atrophy, reduced number of epididymal sperm, and increased apoptosis in seminiferous tubules. However, spermatocyte-specific deletion of Dcp2 did not compromise the fertility. The findings of this study indicated that Dcp2 was important for spermatogenesis and male fertility.


Assuntos
Endorribonucleases , Infertilidade Masculina , Animais , Endorribonucleases/genética , Endorribonucleases/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Espermatogênese , Testículo/metabolismo
16.
Mutagenesis ; 35(5): 391-404, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32914844

RESUMO

DNA ligase I (LIG1) joins DNA strand breaks during DNA replication and repair transactions and contributes to genome integrity. The mutations (P529L, E566K, R641L and R771W) in LIG1 gene are described in patients with LIG1-deficiency syndrome that exhibit immunodeficiency. LIG1 senses 3'-DNA ends with a mismatch or oxidative DNA base inserted by a repair DNA polymerase. However, the ligation efficiency of the LIG1 variants for DNA polymerase-promoted mutagenesis products with 3'-DNA mismatches or 8-oxo-2'-deoxyguanosine (8-oxodG) remains undefined. Here, we report that R641L and R771W fail in the ligation of nicked DNA with 3'-8-oxodG, leading to an accumulation of 5'-AMP-DNA intermediates in vitro. Moreover, we found that the presence of all possible 12 non-canonical base pairs variously impacts the ligation efficiency by P529L and R771W depending on the architecture at the DNA end, whereas E566K exhibits no activity against all substrates tested. Our results contribute to the understanding of the substrate specificity and mismatch discrimination of LIG1 for mutagenic repair intermediates and the effect of non-synonymous mutations on ligase fidelity.


Assuntos
DNA Ligase Dependente de ATP/genética , Reparo de Erro de Pareamento de DNA/genética , Mutagênese/genética , 8-Hidroxi-2'-Desoxiguanosina/genética , Monofosfato de Adenosina/genética , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Dano ao DNA/genética , Replicação do DNA/genética , Genoma/efeitos dos fármacos , Humanos , Mutação/genética , Estresse Oxidativo/efeitos dos fármacos
17.
Nanomedicine ; 24: 102118, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31678180

RESUMO

The benefit of chemotherapy as a constituent of transcatheter arterial chemoembolization (TACE) is still in debate. Recently we have developed arsenic trioxide nanoparticle prodrug (ATONP) as a new anticancer drug, but its systemic toxicity is a big issue. In this preclinical TACE study, ATONP emulsified in lipiodol behaved as drug-eluting bead manner. Sustained release of arsenic from ATONP within occluded tumor caused very low arsenic level in plasma, avoiding the "rushing out" effect as ATO did. Correspondingly, intratumoral arsenic accumulation and inorganic phosphate deprivation were simultaneously observed, and arsenic concentration was much higher as ATONP was transarterially administered than ATO, or intravenously injected. Tumor necrosis and apoptosis were remarkably more severe in ATONP group than ATO, but no significant hepatic and renal toxicity was perceived. In brief, ATONP alleviated arsenic toxicity and boosted the therapeutic effect of TACE via Pi-activated drug sustainable release.


Assuntos
Trióxido de Arsênio , Quimioembolização Terapêutica , Neoplasias Hepáticas Experimentais/terapia , Pró-Fármacos , Animais , Trióxido de Arsênio/farmacocinética , Trióxido de Arsênio/farmacologia , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Óleo Etiodado/química , Óleo Etiodado/farmacocinética , Óleo Etiodado/farmacologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Coelhos
18.
Proc Natl Acad Sci U S A ; 114(42): 11151-11156, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973912

RESUMO

Type I restriction-modification (R-M) systems are multisubunit enzymes with separate DNA-recognition (S), methylation (M), and restriction (R) subunits. Despite extensive studies spanning five decades, the detailed molecular mechanisms underlying subunit assembly and conformational transition are still unclear due to the lack of high-resolution structural information. Here, we report the atomic structure of a type I MTase complex (2M+1S) bound to DNA and cofactor S-adenosyl methionine in the "open" form. The intermolecular interactions between M and S subunits are mediated by a four-helix bundle motif, which also determines the specificity of the interaction. Structural comparison between open and previously reported low-resolution "closed" structures identifies the huge conformational changes within the MTase complex. Furthermore, biochemical results show that R subunits prefer to load onto the closed form MTase. Based on our results, we proposed an updated model for the complex assembly. The work reported here provides guidelines for future applications in molecular biology.


Assuntos
Enzimas de Restrição-Modificação do DNA/metabolismo , Thermoanaerobacter/enzimologia , Enzimas de Restrição-Modificação do DNA/química , Conformação Proteica
19.
Proteins ; 87(9): 791-795, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31035307

RESUMO

The helicase superfamily 2 (SF2) proteins are involved in essentially every step in DNA and RNA metabolism. The radD (yejH) gene, which belongs to SF2, plays an important role in DNA repair. The RadD protein includes all seven conserved SF2 motifs and has shown ATPase activity. Here, we first reported the structure of RadD from Escherichia coli containing two RecA-like domains, a zinc finger motif, and a C-terminal domain. Based on the structure of RadD and other SF2 proteins, we then built a model of the RedD-ATP complex.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cromatografia em Gel , Proteínas de Escherichia coli/genética , Ligação Proteica , Estrutura Secundária de Proteína
20.
Inorg Chem ; 57(15): 9020-9027, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30004680

RESUMO

A novel multifunctional, three-dimensional (3D) lanthanide carbonate cluster based metal-organic framework (MOF) with the general formula {[Gd2(CO3)(ox)2(H2O)2]·3H2O} n (1) has been synthesized via self-assembly of gadolinium (Gd) carbonate and oxalate under hydrothermal conditions. Single-crystal X-ray diffraction reveals that the compound 1 consists of the Gd carbonate cluster with oxalic acid ligands, which form a 3D framework structure with an ordered one-dimensional (1D) pore channel along the a-axis. The coordination water molecules of Gd3+ ions point to the interior of the pore and form a 1D hydrogen bond pathway with oxygen atoms in adjacent oxalic acid that is stable at high temperature (up to 150 °C). The compound 1 features multiple hydrogen-bonding walls and good thermal stabilities, and shows the highest proton conductivity of 1.98 × 10-3 S cm-1 at T = 150 °C and in room air without additional humidity. Magnetic investigations of compound 1 demonstrate that weak antiferromagnetic couplings between adjacent Gd3+ ions bring about large cryogenic magnetocaloric effects. Remarkably, the maximum entropy change (-Δ Sm) of compound 1 reaches 58.5 J kg-1 K-1 at 2 K for a moderate field change (Δ H = 7 T). Moreover, the isomorphous MOFs: {[Ln2(CO3)(ox)2(H2O)2]·3H2O} n (Ln3+ = Ce3+(2), Pr3+(3), Nd3+(4), Tb3+(5)) also are structurally and functionally characterized, and compounds 2-5 exhibit proton conductivity above 10-3 S cm-1 in room air and without additional humidity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA