Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Biotechnol J ; 22(6): 1652-1668, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38345936

RESUMO

Rhizomes are modified stems that grow underground and produce new individuals genetically identical to the mother plant. Recently, a breakthrough has been made in efforts to convert annual grains into perennial ones by utilizing wild rhizomatous species as donors, yet the developmental biology of this organ is rarely studied. Oryza longistaminata, a wild rice species featuring strong rhizomes, provides a valuable model for exploration of rhizome development. Here, we first assembled a double-haplotype genome of O. longistaminata, which displays a 48-fold improvement in contiguity compared to the previously published assembly. Furthermore, spatiotemporal transcriptomics was performed to obtain the expression profiles of different tissues in O. longistaminata rhizomes and tillers. Two spatially reciprocal cell clusters, the vascular bundle 2 cluster and the parenchyma 2 cluster, were determined to be the primary distinctions between the rhizomes and tillers. We also captured meristem initiation cells in the sunken area of parenchyma located at the base of internodes, which is the starting point for rhizome initiation. Trajectory analysis further indicated that the rhizome is regenerated through de novo generation. Collectively, these analyses revealed a spatiotemporal transcriptional transition underlying the rhizome initiation, providing a valuable resource for future perennial crop breeding.


Assuntos
Oryza , Rizoma , Transcriptoma , Rizoma/genética , Rizoma/crescimento & desenvolvimento , Rizoma/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Genoma de Planta/genética
2.
Appl Microbiol Biotechnol ; 107(19): 6013-6028, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37535122

RESUMO

This study investigates the effect of biochar amendment on microbial community structure and soil nutrient status in paddy soil that has been fertilized for an extended period of time, shedding light on sustainable agricultural practices. A 90-day incubation period revealed that biochar amendment, as opposed to long-term fertilization, significantly influenced the physicochemical properties and microbial composition of the soil. The microcosm experiment conducted using six treatments analyzed soil samples from a long-term rice ecosystem. We employed microbial biomarkers (phospholipid fatty acids, PLFAs; isoprenoid and branched glycerol dialkyl glycerol tetraethers, iGDGTs and brGDGTs; DNA) to assess microbial biomass and community structure. Biochar addition led to a decrease in PLFA biomass (15-32%) and archaeal iGDGT abundance (14-43%), while enhancing bacterial brGDGT abundance by 15-77%. Intact biochar increased archaeal and bacterial diversity, though fungal diversity remained unchanged. However, acid-washed biochar did not result in a uniform microbial diversity response. The abundance of various microbial taxa was changed by biochar amendment, including Crenarchaeota, Proteobacteria, Nitrospira, Basidiomycota, Halobacterota, Chloroflexi, Planctomycetota, and Ascomycota. Soil NH4+-N was found as the primary environmental factor impacting the composition of archaea, bacteria, and fungus in this study. These findings imply that the addition of biochar has a quick influence on the structure and activity of microbial communities, with fungi possibly having a critical role in acid paddy soil. This study contributes valuable knowledge for developing sustainable agricultural practices that promote healthy soil ecosystems. KEY POINTS: • Biochar type and phosphorus fertilization demonstrated an interactive effect on the diversity of archaea, but no such effect was observed for bacteria and fungi. • Soil fungi contribute to approximately 20% of the total phospholipid fatty acid (PLFA) content. • Biochar, especially acid-washed rice straw biochar, increases glucose metabolism in bacteria and archaea and decreases saprophytic fungi.


Assuntos
Microbiota , Oryza , Solo/química , Fósforo , Glicerol , Carvão Vegetal , Bactérias/genética , Ácidos Graxos , Archaea , Fosfolipídeos , Microbiologia do Solo
3.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905008

RESUMO

The problem of positioning wireless sensor networks is an important and challenging topic in all walks of life. Inspired by the evolution behavior of natural plant communities and traditional positioning algorithms, a novel positioning algorithm based on the behavior of artificial plant communities is designed and presented here. First, a mathematical model of the artificial plant community is established. Artificial plant communities survive in habitable places rich in water and nutrients, offering the best feasible solution to the problem of positioning a wireless sensor network; otherwise, they leave the non-habitable area, abandoning the feasible solution with poor fitness. Second, an artificial plant community algorithm is presented to solve the positioning problems encountered in a wireless sensor network. The artificial plant community algorithm includes three basic operations, namely seeding, growing, and fruiting. Unlike traditional artificial intelligence algorithms, which always have a fixed population size and only one fitness comparison per iteration, the artificial plant community algorithm has a variable population size and three fitness comparisons per iteration. After seeding by an original population size, the population size decreases during growth, as only the individuals with high fitness can survive, while the individuals with low fitness die. In fruiting, the population size recovers, and the individuals with higher fitness can learn from each other and produce more fruits. The optimal solution in each iterative computing process can be preserved as a parthenogenesis fruit for the next seeding operation. When seeding again, the fruits with high fitness can survive and be seeded, while the fruits with low fitness die, and a small number of new seeds are generated through random seeding. Through the continuous cycle of these three basic operations, the artificial plant community can use a fitness function to obtain accurate solutions to positioning problems in limited time. Third, experiments are conducted using different random networks, and the results verify that the proposed positioning algorithms can obtain good positioning accuracy with a small amount of computation, which is suitable for wireless sensor nodes with limited computing resources. Finally, the full text is summarized, and the technical deficiencies and future research directions are presented.


Assuntos
Inteligência Artificial , Tecnologia sem Fio , Humanos , Redes de Comunicação de Computadores , Modelos Teóricos , Algoritmos
4.
Virol J ; 19(1): 32, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197076

RESUMO

BACKGROUND: The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma is a major factor that limits the benefits of immunotherapy, especially immune checkpoint blockade. One viable strategy for reverting the immunosuppressive conditions is the use of an oncolytic virus (OV) in combination with other immunotherapy approaches. Infection of PDAC cells with a robust OV can change the tumor microenvironment and increase tumor antigen release by its lytic activities. These changes in the tumor may improve responses to immunotherapy, including immune checkpoint blockade. However, a more potent OV may be required for efficiently infecting pancreatic tumors that may be resistant to OV. METHODS: Vesicular stomatitis virus, a rapid replicating OV, was armed to express the Smac protein during virus infection (VSV-S). Adaptation by limited dilution largely increased the selective infection of pancreatic cancer cells by VSV-S. The engineered OV was propagated to a large quantity and evaluated for their antitumor activities in an animal model. RESULTS: In a syngeneic KPC model, intratumoral injection of VSV-S inhibited tumor growth, and induced increasing tumor infiltration of neutrophils and elimination of myeloid derived suppressor cells and macrophages in the tumor. More importantly, M2-like macrophages were eliminated preferentially over those with an M1 phenotype. Reduced levels of arginase 1, TGF-ß and IL-10 in the tumor also provided evidence for reversion of the immunosuppressive conditions by VSV-S infection. In several cases, tumors were completely cleared by VSV-S treatment, especially when combined with anti-PD-1 therapy. A long-term survival of 44% was achieved. CONCLUSIONS: The improved OV, VSV-S, was shown to drastically alter the immune suppressive tumor microenvironment when intratumorally injected. Our results suggest that the combination of potent OV treatment with immune checkpoint blockade may be a promising strategy to treat pancreatic cancer more effectively.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Estomatite Vesicular , Animais , Linhagem Celular Tumoral , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Microambiente Tumoral , Vírus da Estomatite Vesicular Indiana/genética
5.
Appl Microbiol Biotechnol ; 99(20): 8629-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26266753

RESUMO

Saccharopolyspora spinosa can produce spinosad as a major secondary metabolite, which is an environmentally friendly agent for insect control. Cobalamin-independent methionine synthase (MetE) is an important enzyme in methionine biosynthesis, and this enzyme is probably closely related to spinosad production. In this study, its corresponding gene metE was inactivated, which resulted in a rapid growth and glucose utilisation rate and almost loss of spinosad production. A label-free quantitative proteomics-based approach was employed to obtain insights into the mechanism by which the metabolic network adapts to the absence of MetE. A total of 1440 proteins were detected from wild-type and ΔmetE mutant strains at three time points: stationary phase of ΔmetE mutant strain (S1ΔmetE , 67 h), first stationary phase of wild-type strain (S1WT, 67 h) and second stationary phase of wild-type strain (S2WT, 100 h). Protein expression patterns were determined using an exponentially modified protein abundance index (emPAI) and analysed by comparing S1ΔmetE /S1WT and S1ΔmetE /S2WT. Results showed that differentially expressed enzymes were mainly involved in primary metabolism and genetic information processing. This study demonstrated that the role of MetE is not restricted to methionine biosynthesis but rather is involved in global metabolic regulation in S. spinosa.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Deleção de Genes , Proteoma/análise , Saccharopolyspora/enzimologia , Saccharopolyspora/genética , Combinação de Medicamentos , Redes Reguladoras de Genes , Glucose/metabolismo , Macrolídeos/metabolismo , Redes e Vias Metabólicas , Saccharopolyspora/crescimento & desenvolvimento , Saccharopolyspora/metabolismo
6.
Curr Microbiol ; 70(4): 457-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25477065

RESUMO

Bacillus thuringiensis is a kind of insecticidal microorganism which can produce a variety of toxin proteins, it is particularly important to find an effective strategy to identify novel toxin proteins rapidly and comprehensively with the discovery of the wild-type strains. Multi-dimensional high-performance liquid chromatography combined with mass spectrometry has become one of the main methods to detect and identify toxin proteins and proteome of B. thuringiensis. In this study, protein samples from B. thuringiensis strain 4.0718 were analyzed on the basis of two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS), and tryptic peptides of whole cell from the late sporulation phase were eluted at different concentration gradients of ammonium chloride and followed by secondary mass spectrum identification. 831 and 894 proteins were identified from two biological replicates, respectively, while 1,770 and 1,859 peptides were detected correspondingly. Among the identified proteins and peptides, 606 proteins and 1,259 peptides were detected in both replicates, which mean that 1,119 proteins and 2,370 peptides were unique to the proteome of this strain. A total of 15 toxins have been identified successfully, and seven of them were firstly discovered in B. thuringiensis strain 4.0718 that were Crystal protein (A1E259), pesticidal protein (U5KS09), Cry2Af1 (A4GVF0), Cry2Ad (Q9RM89), Cry1 (K4HMB5), Cry1Bc (Q45774), and Cry1Ga (Q45746). The proteomic strategy employed in the present study has provided quick and exhaustive identification of toxins produced by B. thuringiensis.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/análise , Toxinas Bacterianas/análise , Proteômica/métodos , Cromatografia Líquida , Proteoma/análise , Espectrometria de Massas em Tandem
7.
Discov Med ; 36(182): 559-570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531796

RESUMO

BACKGROUND: The epidermal growth factor receptor 2 (HER2) is overexpressed in 30% of breast cancers, and this overexpression is strongly correlated with a poor prognosis. Herceptin is a common treatment for HER2-positive breast cancer; however, cancer cells tend to adapt gradually to the drug, rendering it ineffective. The study revealed an association between the methylation status of the Homeobox C8 (HOXC8) gene and tumor development. Therefore, it is of paramount importance to delve into the interaction between HOXC8 and HER2-positive breast cancer, along with its molecular mechanisms. This exploration holds significant implications for a deeper understanding of the pathophysiological processes underlying HER2-positive breast cancer. METHOD: Tumor tissue and pathological data from patients with HER2-positive breast cancer were systematically collected. Additionally, the human HER2-positive breast cancer cell line, SKBR3, was cultured in vitro to assess both the expression level of HOXC8 and the degree of DNA methylation. The study aimed to explore the relationship between the relative expression of HOXC8 and the clinical characteristics of breast cancer patients. The expression level of HOXC8 and the promoter methylation of HOXC8 were verified by methylation treatment of SKBR3 breast cancer cells. The regulation of HOXC8 was meticulously carried out, leading to the division of the cells into distinct groups. The study further analyzed the expression levels and biological capabilities within each group. Finally, the in vitro and in vivo sensitivity of the cells to Herceptin, a common treatment for HER2-positive breast cancer, was measured to assess the efficacy of the drug. RESULT: In HER2-positive breast cancer cases characterized by poor methylation, there was an up-regulation of HOXC8. Its expression was found to be correlated with key clinical factors such as tumor size, lymph node status, clinical tumor, node, metastasis (cTNM) staging, and Herceptin resistance (p < 0.05). Upon methylation of breast cancer cells, there was a significant decrease in HOXC8 expression (p < 0.05). The study revealed that overexpression of HOXC8 resulted in increased proliferation, cloning, and metastasis of HER2-positive breast cancer cells, along with a reduced apoptosis rate (p < 0.05). Conversely, interference with HOXC8 expression reversed this scenario (p < 0.05). A Herceptin-resistant substrain, POOL2, was established using SKBR3 cells. Animal studies demonstrated that overexpressing HOXC8 accelerated tumor development and enhanced POOL2 cells' resistance to Herceptin (p < 0.05). However, following interference with HOXC8, POOL2 cells exhibited increased responsiveness to Herceptin, leading to a gradual reduction in tumor size (p < 0.05). CONCLUSIONS: In HER2-positive breast cancer, the expression of HOXC8 is elevated in a manner dependent on DNA methylation, and this elevated expression is closely linked to the pathology of the patient. Interfering with HOXC8 expression demonstrates the potential to partially inhibit the development and spread of breast cancer, as well as to alleviate resistance to Herceptin.


Assuntos
Neoplasias da Mama , Animais , Humanos , Feminino , Trastuzumab/genética , Trastuzumab/metabolismo , Trastuzumab/farmacologia , Neoplasias da Mama/patologia , Metilação de DNA , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/uso terapêutico
8.
Toxics ; 12(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38922067

RESUMO

Antimicrobial peptides (AMPs) represent a promising antibiotic alternative to overcome drug-resistant bacteria by inserting into the membrane of bacteria, resulting in cell lysis. However, therapeutic applications of AMPs have been hindered by their ability to lyse eukaryotic cells. GF-17 is a truncated peptide of LL-37, which has perfect amphipathicity and a higher hydrophobicity, resulting in higher haemolytic activity. However, there is no significant difference in the cytotoxicity against human lung epithelial cells between the GF-17 and LL-37 groups, indicating that there are significant differences in the sensitivity of different human cells to GF-17. In this study, LL-37 and GF-17 were administered to mouse lungs via intranasal inoculation. Blood routine examination results showed that LL-37 did not affect the red blood cells, platelet, white blood cells and neutrophil counts, but GF-17 decreased the white blood cells and neutrophil counts with the increasing concentration of peptides. GF-17-treated mice suffer a body weight loss of about 2.3 g on average in 24 h, indicating that GF-17 is highly toxic to mice. The total cell counts in the bronchoalveolar lavage fluid from GF-17-treated mice were 4.66-fold that in the untreated group, suggesting that GF-17 treatment leads to inflammation in the lungs of mice. Similarly, the histological results showed the infiltration of neutrophils in the lungs of GF-17-treated mice. The results suggest that the administration of GF-17 in the lungs of mice does not affect the red blood cells and platelet counts in the blood but promotes neutrophil infiltration in the lungs, leading to an inflammatory response. Therefore, we established a mouse acute lung injury model to preliminarily evaluate the in vivo toxicity of AMPs. For AMPs with a clinical application value, systematic research is still needed to evaluate their acute and long-term toxicity.

9.
Life (Basel) ; 12(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35888088

RESUMO

Compared with gold and silver, cheap copper has attracted more attention and can potentially be applied in non-enzymatic electrochemical sensors due to its excellent conductivity and catalytic activity. In this paper, copper nanoplates were rapidly synthesized using copper bromide as the copper precursor, polyethyleneimine as the stabilizer, and ascorbic acid as a reducing agent in the presence of silver nanoparticles at a reaction temperature of 90 °C. The Cu nanoplates with an average side length of 10.97 ± 3.45 µm were obtained after a short reaction time of 2 h, demonstrating the promoting effect of an appropriate amount of silver nanoparticle on the synthesis of Cu nanoplates. Then, the electrochemical dopamine sensor was constructed by modifying a glass carbon electrode (GCE) with the Cu nanoplates. The results obtained from the test of cyclic voltammetry and chronoamperometry indicated that the Cu-GCE showed a significant electrochemical response for the measurement of dopamine. The oxidation peak current increased linearly with the concentration of dopamine in the range of 200 µmol/L to 2.21 mmol/L, and the corresponding detection limit was calculated to be 62.4 µmol/L (S/N = 3). Furthermore, the anti-interference test showed that the dopamine sensor was not affected by a high concentration of ascorbic acid, glucose, uric acid, etc. Therefore, the constructed Cu-GCE with good selectivity, sensitivity, and stability possesses a high application value in the detection of dopamine.

10.
Nanomaterials (Basel) ; 12(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080027

RESUMO

Inorganic nanomaterials with enzyme-like activity have been attracting much attention due to their low cost, favorable stability, convenient storage, and simple preparation. Herein, Co3O4 nanoplates with a uniform nanostructure were prepared by the thermolysis of cobalt hydroxide at different temperatures, and the influence of the annealing temperature on the performance of the mimetic enzyme also was reported for the first time. The results demonstrated that Co3O4 nanoplates obtained at an annealing temperature of 200 °C possessed strong oxidase activity and efficiently catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) without the addition of hydrogen peroxide to generate the blue color product ox-TMB. Once the annealing temperature was increased to 500 °C and 800 °C, the oxidase activity of Co3O4 decreased rapidly, and was even inactivated. This might be attributed to the relatively large specific surface area of Co3O4 annealed at 200 °C. Besides this, based on the TMB-Co3O4 nanoplate system, a colorimetric analysis method was developed to detect dopamine with a limit of 0.82 µmol/L in a linear range from 1.6 µmol/L to 20 µmol/L.

11.
Children (Basel) ; 9(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36010131

RESUMO

Headache and allergic rhinitis (AR) are common in children and often co-occur. We investigated the clinical characteristics of pediatric headaches and the association of AR and chronic headaches. We retrospectively reviewed the medical records of patients admitted to our pediatric inpatient and outpatient clinics with complaints of headache between January 2017 and June 2020 for headache-specific history, AR signs and symptoms, allergy skin prick test, inhalant multiple allergen simultaneous test results, laboratory and imaging findings, and medication history. The patients were divided into three subgroups: AR, non-AR, and headache groups, reporting 45.7% patients with headache alone, 13.7% with additional AR, and 31.6% with abnormal imaging findings, suggesting that headache was combined with sinusitis (24.3%) or mastoiditis (7.3%). Furthermore, 6% of the patients had both AR and sinusitis. Body mass index (BMI) differed significantly between the AR and the non-AR and headache groups (p = 0.03). The BMI differed significantly according to headache severity (p ˂ 0.001). The most common allergen was "dust or mites" (41.1%). Acetaminophen (35.9%) was the most commonly used painkiller. The coexistence of AR and headache may indicate that these conditions share a similar pathophysiology. Better management of allergies may facilitate diagnosis, treatment, and prophylaxis of headaches.

12.
Protein Sci ; 31(8): e4367, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35900024

RESUMO

Mouse double minute 2 homolog (MDM2) is an E3 ubiquitin-protein ligase that is involved in the transfer of ubiquitin to p53 and other protein substrates. The expression of MDM2 is elevated in cancer cells and inhibitors of MDM2 showed potent anticancer activities. Many inhibitors target the p53 binding domain of MDM2. However, inhibitors such as Inulanolide A and MA242 are found to bind the RING domain of MDM2 to block ubiquitin transfer. In this report, crystal structures of MDM2 RING domain in complex with Inulanolide A and MA242 were solved. These inhibitors primarily bind in a hydrophobic site centered at the sidechain of Tyr489 at the C-terminus of MDM2 RING domain. The C-terminus of MDM2 RING domain, especially residue Tyr489, is required for ubiquitin discharge induced by MDM2. The binding of these inhibitors at Tyr489 may interrupt interactions between the MDM2 RING domain and the E2-Ubiquitin complex to inhibit ubiquitin transfer, regardless of what the substrate is. Our results suggest a new mechanism of inhibition of MDM2 E3 activity for a broad spectrum of substrates.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Animais , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo
13.
J Obes Metab Syndr ; 29(3): 180-187, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32843586

RESUMO

Chronic diseases in postmenopausal women are caused by rapid changes in hormones and are accompanied by rapid changes in body composition (muscle, bone, and fat). In an aging society, the health of postmenopausal women is a social issue, and people's interest in ingesting high-quality protein is increasing in order to maintain a healthy body composition. This review aims to summarize the efficacy of soy foods and their impact on body composition. The soy protein and isoflavones contained in soy foods can improve muscle and bone density quality and reduce body weight. It is considered a breakthrough in preventing osteosarcopenia and obesity that may occur after menopause.

14.
Viruses ; 12(11)2020 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114336

RESUMO

Influenza is one of the top threats to public health. The best strategy to prevent influenza is vaccination. Because of the antigenic changes in the major surface antigens of influenza viruses, current seasonal influenza vaccines need to be updated every year to match the circulating strains and are suboptimal for protection. Furthermore, seasonal vaccines do not protect against potential influenza pandemics. A universal influenza vaccine will eliminate the threat of both influenza epidemics and pandemics. Due to the massive challenge in realizing influenza vaccine universality, a single vaccine strategy cannot meet the need. A comprehensive approach that integrates advances in immunogen designs, vaccine and adjuvant nanoplatforms, and vaccine delivery and controlled release has the potential to achieve an effective universal influenza vaccine. This review will summarize the advances in the research and development of an affordable universal influenza vaccine.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Microinjeções/instrumentação , Nanotecnologia/métodos , Vacinação/métodos , Animais , Anticorpos Antivirais , Proteção Cruzada/imunologia , Humanos , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Camundongos , Microinjeções/métodos , Nanotecnologia/instrumentação , Agulhas/classificação , Pandemias/prevenção & controle , Vacinação/instrumentação
15.
J Biol Eng ; 13: 58, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297149

RESUMO

Traditional cancer therapies, such as surgery treatment, radiotherapy, and chemotherapy, often fail to completely eliminate tumor cells in an anaerobic microenvironment of tumor regions. In contrast to these traditional cancer therapies, the use of targeted delivery vectors to deliver anticancer genes or antitumor drugs to hypoxic areas in tumors is the most clinically promising cancer treatment with rapid development in recent years. In this study, E.coli Nissle 1917 (EcN), an intestinal probiotic, was utilized as a targeted transport vector to deliver p53 and Tum-5 protein to tumor hypoxic regions. The tumor-targeting characteristics of EcN were investigated using luciferase LuxCDABE operon, and the results demonstrated that EcN could specifically accumulate in the solid tumor areas of SMMC-7721 tumor-bearing BALB/c nude mice. The Tum 5-p53 bifunctional proteins were initially constructed and then delivered to solid tumor regions by using the targeted transporter EcN for cancer therapy. The antitumor effect and safety of three engineered bacteria, namely, EcN (Tum-5), EcN (p53), and EcN (Tum 5-p53), were also examined. The calculated tumor volume and tumor weight indicated that these three engineered bacteria could inhibit the growth of human hepatoma SMMC-7721 cells, and the antitumor effect of EcN (Tum 5-p53) expressing the Tum 5-p53 fusion protein was significantly better than those of EcN (Tum-5) and EcN (p53) alone. Immunofluorescence demonstrated that the expression of Ki-67, a nuclear proliferation-related protein, was inhibited in the tumor areas of the groups treated with the engineered bacteria, whereas the expression of caspase-3 was upregulated. The expression trends of Ki-67 and caspase-3 were consistent with the different antitumor efficacies of these three engineered bacteria. EcN did not elicit obvious side effects on mice. This research not only provids a foundation for tumor-targeted therapy but also contributes greatly to the development of antitumor agents and anticancer proteins.

16.
Oncotarget ; 8(49): 85772-85782, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29156755

RESUMO

Tumor growth and metastasis depend on angiogenesis. Thus, inhibiting tumor angiogenesis has become promising cancer therapeutic strategy in recent years. Tumstatin is a more powerful angiogenesis inhibitor than endostatin. Anti-angiogenic active fragment encoding amino acids 45-132 (Tum-5) of tumstatin was subcloned into four different inducible expression vectors and successfully solubly expressed in Escherichia coli BL21 (DE3) in this study. Subsequently, an anaerobic inducible expression vector was constructed under Vitreoscilla hemoglobin gene promoter Pvhb in E. coli Nissle 1917 (EcN). The secretory expression of Tum-5 in the engineered bacterium was determined in vitro and in vivo by Western blot or immunochemistry. The anti-tumor effect detection demonstrated that EcN could specifically colonize the tumor, and B16 melanoma tumor growth was remarkably restrained by EcN (Tum-5) in mice bearing B16 melanoma tumor. Abundant infiltrating inflammatory cells were observed in tumor areas of the EcN-treated group through hematoxylin and eosin staining, with a relatively reduced expression of endothelial marker platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) by immunofluorescence in tumor sections of EcN (Tum-5)-treated mice. No significant morphological differences were observed in the liver, kidney and spleen between EcN-treated mice and the control group, indicating that EcN was cleared by the immune system and did not cause systemic toxicity in mice. These findings demonstrated that the gene delivery of Tum-5 to solid tumors could be an effective strategy for cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA