Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 174(1): 143-155.e16, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29779947

RESUMO

Neisseria meningitidis, a bacterium responsible for meningitis and septicemia, proliferates and eventually fills the lumen of blood capillaries with multicellular aggregates. The impact of this aggregation process and its specific properties are unknown. We first show that aggregative properties are necessary for efficient infection and study their underlying physical mechanisms. Micropipette aspiration and single-cell tracking unravel unique features of an atypical fluidized phase, with single-cell diffusion exceeding that of isolated cells. A quantitative description of the bacterial pair interactions combined with active matter physics-based modeling show that this behavior relies on type IV pili active dynamics that mediate alternating phases of bacteria fast mutual approach, contact, and release. These peculiar fluid properties proved necessary to adjust to the geometry of capillaries upon bacterial proliferation. Intermittent attractive forces thus generate a fluidized phase that allows for efficient colonization of the blood capillary network during infection.


Assuntos
Aderência Bacteriana/fisiologia , Capilares/microbiologia , Fímbrias Bacterianas/fisiologia , Neisseria meningitidis/patogenicidade , Animais , Carga Bacteriana , Capilares/patologia , Endotélio/metabolismo , Endotélio/microbiologia , Endotélio/patologia , Feminino , Proteínas de Fímbrias/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos SCID , Microscopia Confocal , Neisseria meningitidis/fisiologia , Transplante de Pele , Tensão Superficial , Imagem com Lapso de Tempo , Transplante Heterólogo
2.
Proc Natl Acad Sci U S A ; 116(28): 13833-13838, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235592

RESUMO

Walled cells of plants, fungi, and bacteria come with a large range of shapes and sizes, which are ultimately dictated by the mechanics of their cell wall. This stiff and thin polymeric layer encases the plasma membrane and protects the cells mechanically by opposing large turgor pressure derived mechanical stresses. To date, however, we still lack a quantitative understanding for how local and/or global mechanical properties of the wall support cell morphogenesis. Here, we combine subresolution imaging and laser-mediated wall relaxation to quantitate subcellular values of wall thickness (h) and bulk elastic moduli (Y) in large populations of live mutant cells and in conditions affecting cell diameter in the rod-shaped model fission yeast. We find that lateral wall stiffness, defined by the surface modulus, σ = hY, robustly scales with cell diameter. This scaling is valid across tens of mutants spanning various functions-within the population of individual isogenic strains, along single misshaped cells, and even across the fission yeasts clade. Dynamic modulations of cell diameter by chemical and/or mechanical means suggest that the cell wall can rapidly adapt its surface mechanics, rendering stretched wall portions stiffer than unstretched ones. Size-dependent wall stiffening constrains diameter definition and limits size variations; it may also provide an efficient means to keep elastic strains in the wall below failure strains, potentially promoting cell survival. This quantitative set of data impacts our current understanding of the mechanics of cell walls and its contribution to morphogenesis.


Assuntos
Parede Celular/química , Morfogênese , Schizosaccharomyces/química , Estresse Mecânico , Actinas/química , Fenômenos Biomecânicos , Membrana Celular/química , Módulo de Elasticidade , Pressão , Schizosaccharomyces/crescimento & desenvolvimento , Propriedades de Superfície
3.
Biophys J ; 113(5): 1109-1120, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877493

RESUMO

The spatial gradient of signaling molecules is pivotal for establishing developmental patterns of multicellular organisms. It has long been proposed that these gradients could arise from the pure diffusion process of signaling molecules between cells, but whether this simplest mechanism establishes the formation of the tissue-scale gradient remains unclear. Plasmodesmata are unique channel structures in plants that connect neighboring cells for molecular transport. In this study, we measured cellular- and tissue-scale kinetics of molecular transport through plasmodesmata in Arabidopsis thaliana developing leaf primordia by fluorescence recovery assays. These trans-scale measurements revealed biophysical properties of diffusive molecular transport through plasmodesmata and revealed that the tissue-scale diffusivity, but not the cellular-scale diffusivity, is spatially different along the leaf proximal-to-distal axis. We found that the gradient in cell size along the developmental axis underlies this spatially different tissue-scale diffusivity. We then asked how this diffusion-based framework functions in establishing a signaling gradient of endogenous molecules. ANGUSTIFOLIA3 (AN3) is a transcriptional co-activator, and as we have shown here, it forms a long-range signaling gradient along the leaf proximal-to-distal axis to determine a cell-proliferation domain. By genetically engineering AN3 mobility, we assessed each contribution of cell-to-cell movement and tissue growth to the distribution of the AN3 gradient. We constructed a diffusion-based theoretical model using these quantitative data to analyze the AN3 gradient formation and demonstrated that it could be achieved solely by the diffusive molecular transport in a growing tissue. Our results indicate that the spatially different tissue-scale diffusivity is a core mechanism for AN3 gradient formation. This provides evidence that the pure diffusion process establishes the formation of the long-range signaling gradient in leaf development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas Repressoras/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Transporte Biológico/fisiologia , Proliferação de Células/fisiologia , Tamanho Celular , Simulação por Computador , Difusão , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Microscopia Confocal , Modelos Biológicos , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo , Proteínas Repressoras/genética
4.
J Plant Res ; 128(1): 17-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25516503

RESUMO

Signaling molecules move between cells to form a characteristic distribution pattern within a developing organ; thereafter, they spatiotemporally regulate organ development. A key question in this process is how the signaling molecules robustly form the precise distribution on a tissue scale in a reproducible manner. Despite of an increasing number of quantitative studies regarding the mobility of signaling molecules, the detail mechanism of organogenesis via intercellular signaling is still unclear. We here review the potential advantages of plant development to address this question, focusing on the cytoplasmic continuity of plant cells through the plasmodesmata. The plant system would provide a unique opportunity to define the simple transportation mode of diffusion process, and, hence, the mechanism of organogenesis via intercellular signaling. Based on the advances in the understanding of intercellular signaling at the molecular level and in the quantitative imaging techniques, we discuss our current challenges in measuring the mobility of signaling molecules for deciphering plant organogenesis.


Assuntos
Organogênese Vegetal , Transdução de Sinais , Transporte Biológico , Especificidade de Órgãos , Células Vegetais , Plasmodesmos
5.
Biophys J ; 106(1): 16-25, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24411233

RESUMO

For biophysical understanding of cell motility, the relationship between mechanical force and cell migration must be uncovered, but it remains elusive. Since cells migrate at small scale in dissipative circumstances, the inertia force is negligible and all forces should cancel out. This implies that one must quantify the spatial pattern of the force instead of just the summation to elucidate the force-motion relation. Here, we introduced multipole analysis to quantify the traction stress dynamics of migrating cells. We measured the traction stress of Dictyostelium discoideum cells and investigated the lowest two moments, the force dipole and quadrupole moments, which reflect rotational and front-rear asymmetries of the stress field. We derived a simple force-motion relation in which cells migrate along the force dipole axis with a direction determined by the force quadrupole. Furthermore, as a complementary approach, we also investigated fine structures in the stress field that show front-rear asymmetric kinetics consistent with the multipole analysis. The tight force-motion relation enables us to predict cell migration only from the traction stress patterns.


Assuntos
Movimento Celular , Módulo de Elasticidade , Modelos Biológicos , Dictyostelium/fisiologia , Movimento (Física)
6.
Phys Rev Lett ; 109(24): 248110, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368393

RESUMO

We report a quantitative measurement of traction stress exerted by dividing eukaryotic cells. The stress field was highly dynamic and sequentially changed as follows: (1) strong and localized as two spots, (2) weak and broadly distributed, and (3) strong and localized as four spots. At the final stage of cytokinesis, the dividing cells exerted strong tensile force on the intercellular bridge. The asymmetry of the traction stress and the orientation of the division axis matched throughout the division process, suggesting the possible role of the mechanical force as a "store" of the orientational information.


Assuntos
Divisão Celular/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos , Adesão Celular/fisiologia , Dictyosteliida/citologia
7.
Nat Phys ; 14(8): 848-854, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30079097

RESUMO

In early embryos, microtubules form star-shaped aster structures that can measure up to hundreds of micrometres, and move at high speeds to find the geometrical centre of the cell. This process, known as aster centration, is essential for the fidelity of cell division and development, but how cells succeed in moving these large structures through their crowded and fluctuating cytoplasm remains unclear. Here, we demonstrate that the positional fluctuations of migrating sea urchin sperm asters are small, anisotropic, and associated with the stochasticity of dynein-dependent forces moving the aster. Using in vivo magnetic tweezers to directly measure aster forces inside cells, we derive a linear aster force-velocity relationship and provide evidence for a spring-like active mechanism stabilizing the transverse position of the asters. The large frictional coefficient and spring constant quantitatively account for the amplitude and growth characteristics of athermal positional fluctuations, demonstrating that aster mechanics ensure noise suppression to promote persistent and precise centration. These findings define generic biophysical regimes of active cytoskeletal mechanics underlying the accuracy of cell division and early embryonic development.

8.
Dev Cell ; 45(2): 170-182.e7, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29689193

RESUMO

How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival.


Assuntos
Parede Celular/fisiologia , Morfogênese/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Fenômenos Biomecânicos , Ciclo Celular , Polaridade Celular , Proliferação de Células , Forma Celular , Sobrevivência Celular , Parede Celular/ultraestrutura , Modelos Biológicos , Schizosaccharomyces/ultraestrutura , Estresse Mecânico
9.
J Cell Biol ; 212(7): 777-87, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27022090

RESUMO

Although mechanisms that contribute to microtubule (MT) aster positioning have been extensively studied, still little is known on how asters move inside cells to faithfully target a cellular location. Here, we study sperm aster centration in sea urchin eggs, as a stereotypical large-scale aster movement with extreme constraints on centering speed and precision. By tracking three-dimensional aster centration dynamics in eggs with manipulated shapes, we show that aster geometry resulting from MT growth and interaction with cell boundaries dictates aster instantaneous directionality, yielding cell shape-dependent centering trajectories. Aster laser surgery and modeling suggest that dynein-dependent MT cytoplasmic pulling forces that scale to MT length function to convert aster geometry into directionality. In contrast, aster speed remains largely independent of aster size, shape, or absolute dynein activity, which suggests it may be predominantly determined by aster growth rate rather than MT force amplitude. These studies begin to define the geometrical principles that control aster movements.


Assuntos
Movimento Celular , Forma Celular , Mecanotransdução Celular , Microtúbulos/fisiologia , Interações Espermatozoide-Óvulo , Espermatozoides/fisiologia , Animais , Dineínas/metabolismo , Feminino , Imageamento Tridimensional , Terapia a Laser , Masculino , Microscopia Confocal , Microscopia de Vídeo , Microtúbulos/metabolismo , Modelos Biológicos , Ouriços-do-Mar , Espermatozoides/metabolismo , Estresse Mecânico , Fatores de Tempo , Imagem com Lapso de Tempo
10.
Curr Biol ; 25(20): 2677-83, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26441355

RESUMO

Intracellular structures and organelles such as the nucleus, the centrosome, or the mitotic spindle typically scale their size to cell size [1]. Similarly, cortical polarity domains built around the active form of conserved Rho-GTPases, such as Cdc42p, exhibit widths that may range over two orders of magnitudes in cells with different sizes and shapes [2-6]. The establishment of such domains typically involves positive feedback loops based on reaction-diffusion and/or actin-mediated vesicle transport [3, 7, 8]. How these elements may adapt polarity domain size to cellular geometry is not known. Here, by tracking the width of successive oscillating Cdc42-GTP domains in fission yeast spores [9], we find that domain width scales with local cell-surface radii of curvature over an 8-fold range, independently of absolute cell volume, surface, or Cdc42-GTP concentration. This local scaling requires formin-nucleated cortical actin cables and the fusion of secretory vesicles transported along these cables with the membrane. These data suggest that reaction-diffusion may set a minimal domain size and that secretory vesicle transport along actin cables may dilute and extend polarity domains to adapt their size to local cell-surface curvature. This work reveals that actin networks may act as micrometric curvature sensors and uncovers a generic morphogenetic principle for how polarity domains define their size according to cell morphologies.


Assuntos
Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteína cdc42 de Ligação ao GTP/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Estrutura Terciária de Proteína , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Vesículas Secretórias/metabolismo , Esporos Fúngicos/citologia , Esporos Fúngicos/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA