Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Mol Life Sci ; 81(1): 153, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538865

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are members of the glutamate receptor family and participate in excitatory postsynaptic transmission throughout the central nervous system. Genetic variants in GRIN genes encoding NMDAR subunits are associated with a spectrum of neurological disorders. The M3 transmembrane helices of the NMDAR couple directly to the agonist-binding domains and form a helical bundle crossing in the closed receptors that occludes the pore. The M3 functions as a transduction element whose conformational change couples ligand binding to opening of an ion conducting pore. In this study, we report the functional consequences of 48 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M3 transmembrane helix. These de novo variants were identified in children with neurological and neuropsychiatric disorders including epilepsy, developmental delay, intellectual disability, hypotonia and attention deficit hyperactivity disorder. All 48 variants in M3 for which comprehensive testing was completed produce a gain-of-function (28/48) compared to loss-of-function (9/48); 11 variants had an indeterminant phenotype. This supports the idea that a key structural feature of the M3 gate exists to stabilize the closed state so that agonist binding can drive channel opening. Given that most M3 variants enhance channel gating, we assessed the potency of FDA-approved NMDAR channel blockers on these variant receptors. These data provide new insight into the structure-function relationship of the NMDAR gate, and suggest that variants within the M3 transmembrane helix produce a gain-of-function.


Assuntos
Epilepsia , Receptores de N-Metil-D-Aspartato , Criança , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Epilepsia/genética , Mutação de Sentido Incorreto , Fenótipo
2.
PLoS Genet ; 13(1): e1006536, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28095420

RESUMO

N-methyl-D-aspartate receptors (NMDARs), ligand-gated ionotropic glutamate receptors, play key roles in normal brain development and various neurological disorders. Here we use standing variation data from the human population to assess which protein domains within NMDAR GluN1, GluN2A and GluN2B subunits show the strongest signal for being depleted of missense variants. We find that this includes the GluN2 pre-M1 helix and linker between the agonist-binding domain (ABD) and first transmembrane domain (M1). We then evaluate the functional changes of multiple missense mutations in the NMDAR pre-M1 helix found in children with epilepsy and developmental delay. We find mutant GluN1/GluN2A receptors exhibit prolonged glutamate response time course for channels containing 1 or 2 GluN2A-P552R subunits, and a slow rise time only for receptors with 2 mutant subunits, suggesting rearrangement of one GluN2A pre-M1 helix is sufficient for rapid activation. GluN2A-P552R and analogous mutations in other GluN subunits increased the agonist potency and slowed response time course, suggesting a functionally conserved role for this residue. Although there is no detectable change in surface expression or open probability for GluN2A-P552R, the prolonged response time course for receptors that contained GluN2A-P552R increased charge transfer for synaptic-like activation, which should promote excitotoxic damage. Transfection of cultured neurons with GluN2A-P552R prolonged EPSPs, and triggered pronounced dendritic swelling in addition to excitotoxicity, which were both attenuated by memantine. These data implicate the pre-M1 region in gating, provide insight into how different subunits contribute to gating, and suggest that mutations in the pre-M1 helix can compromise neuronal health. Evaluation of FDA-approved NMDAR inhibitors on the mutant NMDAR-mediated current response and neuronal damage provides a potential clinical path to treat individuals harboring similar mutations in NMDARs.


Assuntos
Ativação do Canal Iônico , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células Cultivadas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Memantina/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/fisiologia , Domínios Proteicos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Xenopus
3.
Am J Hum Genet ; 99(6): 1261-1280, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27839871

RESUMO

Epilepsy and intellectual disability are associated with rare variants in the GluN2A and GluN2B (encoded by GRIN2A and GRIN2B) subunits of the N-methyl-D-aspartate receptor (NMDAR), a ligand-gated ion channel with essential roles in brain development and function. By assessing genetic variation across GluN2 domains, we determined that the agonist binding domain, transmembrane domain, and the linker regions between these domains were particularly intolerant to functional variation. Notably, the agonist binding domain of GluN2B exhibited significantly more variation intolerance than that of GluN2A. To understand the ramifications of missense variation in the agonist binding domain, we investigated the mechanisms by which 25 rare variants in the GluN2A and GluN2B agonist binding domains dysregulated NMDAR activity. When introduced into recombinant human NMDARs, these rare variants identified in individuals with neurologic disease had complex, and sometimes opposing, consequences on agonist binding, channel gating, receptor biogenesis, and forward trafficking. Our approach combined quantitative assessments of these effects to estimate the overall impact on synaptic and non-synaptic NMDAR function. Interestingly, similar neurologic diseases were associated with both gain- and loss-of-function variants in the same gene. Most rare variants in GluN2A were associated with epilepsy, whereas GluN2B variants were associated with intellectual disability with or without seizures. Finally, discerning the mechanisms underlying NMDAR dysregulation by these rare variants allowed investigations of pharmacologic strategies to correct NMDAR function.


Assuntos
Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Epilepsia/genética , Exoma/genética , Ácido Glutâmico/metabolismo , Humanos , Deficiência Intelectual/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Neurônios/metabolismo , Ligação Proteica/genética , Domínios Proteicos/genética , Transporte Proteico , Receptores de N-Metil-D-Aspartato/química , Convulsões/genética
4.
Am J Hum Genet ; 99(4): 802-816, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27616483

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated cation channels that mediate excitatory synaptic transmission. Genetic mutations in multiple NMDAR subunits cause various childhood epilepsy syndromes. Here, we report a de novo recurrent heterozygous missense mutation-c.1999G>A (p.Val667Ile)-in a NMDAR gene previously unrecognized to harbor disease-causing mutations, GRIN2D, identified by exome and candidate panel sequencing in two unrelated children with epileptic encephalopathy. The resulting GluN2D p.Val667Ile exchange occurs in the M3 transmembrane domain involved in channel gating. This gain-of-function mutation increases glutamate and glycine potency by 2-fold, increases channel open probability by 6-fold, and reduces receptor sensitivity to endogenous negative modulators such as extracellular protons. Moreover, this mutation prolongs the deactivation time course after glutamate removal, which controls the synaptic time course. Transfection of cultured neurons with human GRIN2D cDNA harboring c.1999G>A leads to dendritic swelling and neuronal cell death, suggestive of excitotoxicity mediated by NMDAR over-activation. Because both individuals' seizures had proven refractory to conventional antiepileptic medications, the sensitivity of mutant NMDARs to FDA-approved NMDAR antagonists was evaluated. Based on these results, oral memantine was administered to both children, with resulting mild to moderate improvement in seizure burden and development. The older proband subsequently developed refractory status epilepticus, with dramatic electroclinical improvement upon treatment with ketamine and magnesium. Overall, these results suggest that NMDAR antagonists can be useful as adjuvant epilepsy therapy in individuals with GRIN2D gain-of-function mutations. This work further demonstrates the value of functionally evaluating a mutation, enabling mechanistic understanding and therapeutic modeling to realize precision medicine for epilepsy.


Assuntos
Genes Dominantes/genética , Mutação , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/genética , Sequência de Aminoácidos , Sequência de Bases , Morte Celular , Criança , Análise Mutacional de DNA , Dendritos/patologia , Eletroencefalografia , Exoma/genética , Feminino , Ácido Glutâmico/metabolismo , Humanos , Lactente , Recém-Nascido , Ketamina/uso terapêutico , Magnésio/uso terapêutico , Memantina/administração & dosagem , Memantina/uso terapêutico , Modelos Moleculares , Medicina de Precisão , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/tratamento farmacológico , Convulsões/genética , Convulsões/metabolismo , Espasmos Infantis/metabolismo
5.
Mol Pharmacol ; 91(4): 317-330, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28126851

RESUMO

The N-methyl-d-aspartate receptor (NMDAR), a ligand-gated ionotropic glutamate receptor, plays important roles in normal brain development and a wide range of neurologic disorders, including epilepsy. Here, we evaluate for the first time the functional properties of a de novo GRIN2A missense mutation (p.M817V) in the pre-M4 linker in a child with profound global developmental delay and refractory epilepsy. Electrophysiologic recordings revealed that the mutant GluN2A(M817V)-containing receptors showed enhanced agonist potency, reduced sensitivity to endogenous negative inhibitors (Mg2+, proton, and zinc), prolonged synaptic-like response time course, increased single-channel mean open time, and increased channel open probability. These results suggest that the gain-of-function M817V mutation causes overactivation of NMDAR and drives neuronal hyperexcitability, which may contribute to the patient's observed epileptic phenotype. Molecular modeling of the closed channel conformation reveals that this mutation weakens the interaction between GluN2 transmembrane helix M4 and two GluN1 transmembrane helices, and increases atomic fluctuation or movement of the pre-M1 region of GluN1 subunit, suggesting a mechanism by which channel function is enhanced. The functional changes of this mutation on agonist potency occur when the mutation is introduced into all other GluN2 subunits, suggesting a conserved role of this residue in control of NMDAR function through interactions of membrane spanning GluN2 and GluN1 helices. A number of NMDAR-targeted drugs including U.S. Food and Drug Association-approved NMDAR channel blockers were evaluated for their ability to inhibit receptors containing GluN2A(M817V) as a first step to exploring the potential for rescue pharmacology and personalized medicine.


Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia/genética , Mutação de Sentido Incorreto/genética , Receptores de N-Metil-D-Aspartato/genética , Sequência de Aminoácidos , Sequência Conservada , Células HEK293 , Humanos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Fatores de Tempo
6.
J Hum Genet ; 62(6): 589-597, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28228639

RESUMO

N-methyl-d-aspartate receptors (NMDARs) play important roles in brain development and neurological disease. We report two individuals with similar dominant de novo GRIN1 mutations (c.1858 G>A and c.1858 G>C; both p.G620R). Both individuals presented at birth with developmental delay and hypotonia associated with behavioral abnormalities and stereotypical movements. Recombinant NMDARs containing the mutant GluN1-G620R together with either GluN2A or GluN2B were evaluated for changes in their trafficking to the plasma membrane and their electrophysiological properties. GluN1-G620R/GluN2A complexes showed a mild reduction in trafficking, a ~2-fold decrease in glutamate and glycine potency, a strong decrease in sensitivity to Mg2+ block, and a significant reduction of current responses to a maximal effective concentration of agonists. GluN1-G620R/GluN2B complexes showed significantly reduced delivery of protein to the cell surface associated with similarly altered electrophysiology. These results indicate these individuals may have suffered neurodevelopmental deficits as a result of the decreased presence of GluN1-G620R/GluN2B complexes on the neuronal surface during embryonic brain development and reduced current responses of GluN1-G620R-containing NMDARs after birth. These cases emphasize the importance of comprehensive functional characterization of de novo mutations and illustrates how a combination of several distinct features of NMDAR expression, trafficking and function can be present and influence phenotype.


Assuntos
Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética , Adulto , Membrana Celular/genética , Membrana Celular/metabolismo , Criança , Feminino , Glicina/genética , Humanos , Deficiência Intelectual/patologia , Masculino , Mutação , Neurônios/metabolismo , Neurônios/patologia , Transporte Proteico/genética , Proteínas Recombinantes/genética
7.
PLoS One ; 12(2): e0170818, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28182669

RESUMO

OBJECTIVE: N-methyl-D-aspartate receptors (NMDAR) subunit GRIN2A/GluN2A mutations have been identified in patients with various neurological diseases, such as epilepsy and intellectual disability / developmental delay (ID/DD). In this study, we investigated the phenotype and underlying molecular mechanism of a GRIN2A missense mutation identified by next generation sequencing on idiopathic focal epilepsy using in vitro electrophysiology. METHODS: Genomic DNA of patients with epilepsy and ID/DD were sequenced by targeted next-generation sequencing within 300 genes related to epilepsy and ID/DD. The effects of one missense GRIN2A mutation on NMDAR function were evaluated by two-electrode voltage clamp current recordings and whole cell voltage clamp current recordings. RESULTS: We identified one de novo missense GRIN2A mutation (Asp731Asn, GluN2A(D731N)) in a child with unexplained epilepsy and DD. The D731N mutation is located in a portion of the agonist-binding domain (ABD) in the GluN2A subunit, which is the binding pocket for agonist glutamate. This residue in the ABD is conserved among vertebrate species and all other NMDAR subunits, suggesting an important role in receptor function. The proband shows developmental delay as well as EEG-confirmed seizure activity. Functional analyses reveal that the GluN2A(D731N) mutation decreases glutamate potency by over 3,000-fold, reduces amplitude of current response, shortens synaptic-like response time course, and decreases channel open probability, while enhancing sensitivity to negative allosteric modulators, including extracellular proton and zinc inhibition. The combined effects reduce NMDAR function. SIGNIFICANCE: We identified a de novo missense mutation in the GRIN2A gene in a patient with childhood focal epilepsy and acquired epileptic aphasia. The mutant decreases NMDAR activation suggesting NMDAR hypofunction may contribute to the epilepsy pathogenesis.


Assuntos
Eletroencefalografia , Epilepsias Parciais , Síndrome de Landau-Kleffner , Potenciais da Membrana/genética , Mutação de Sentido Incorreto , Receptores de N-Metil-D-Aspartato , Substituição de Aminoácidos , Epilepsias Parciais/genética , Epilepsias Parciais/metabolismo , Epilepsias Parciais/fisiopatologia , Feminino , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome de Landau-Kleffner/genética , Síndrome de Landau-Kleffner/metabolismo , Síndrome de Landau-Kleffner/fisiopatologia , Masculino , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Ann Clin Transl Neurol ; 1(3): 190-198, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24839611

RESUMO

OBJECTIVE: Early-onset epileptic encephalopathies have been associated with de novo mutations of numerous ion channel genes. We employed techniques of modern translational medicine to identify a disease-causing mutation, analyze its altered behavior, and screen for therapeutic compounds to treat the proband. METHODS: Three modern translational medicine tools were utilized: 1) high-throughput sequencing technology to identify a novel de novo mutation; 2) in vitro expression and electrophysiology assays to confirm the variant protein's dysfunction; and 3) screening of existing drug libraries to identify potential therapeutic compounds. RESULTS: A de novo GRIN2A missense mutation (c.2434C>A; p.L812M) increased the charge transfer mediated by NMDA receptors containing the mutant GluN2A-L812M subunit. In vitro analysis with NMDA receptor blockers indicated that GLuN2A-L812M-containing NMDARs retained their sensitivity to the use-dependent channel blocker memantine; while screening of a previously reported GRIN2A mutation (N615K) with these compounds produced contrasting results. Consistent with these data, adjunct memantine therapy reduced our proband's seizure burden. INTERPRETATION: This case exemplifies the potential for personalized genomics and therapeutics to be utilized for the early diagnosis and treatment of infantile-onset neurological disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA