Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 241: 113795, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35753274

RESUMO

Sedum alfredii Hance is a perennial herb native to China that can particularly be found in regions with abandoned Pb/Zn mines. It is a Cd/Zn hyperaccumulator that is highly tolerant to Pb, Cu, Ni, and Mn, showing potential for phytoremediation of soils contaminated with multiple heavy metals. A better understanding of how this species responds to different heavy metals would advance the phytoremediation efficiency. In this study, transcriptomic regulation of S. alfredii roots after Cd, Zn, Pb, and Cu exposure was analyzed to explore the candidate genes involved in multi-heavy metal tolerance. Although Zn and Cd, Pb and Cu had similar distribution patterns in S. alfredii, distinct expression patterns were exhibited among these four metal treatments, especially about half of the differentially expressed genes were upregulated under Cu treatment, suggesting that it utilizes distinctive and flexible strategies to cope with specific metal stress. Most unigenes regulated by Cu were enriched in catalytic activity, whereas the majority of unigenes regulated by Pb had unknown functions, implying that S. alfredii may have a unique strategy coping with Pb stress different from previous cognition. The unigenes that were co-regulated by multiple heavy metals exhibited functions of antioxidant substances, antioxidant enzymes, transporters, transcription factors, and cell wall components. These metal-induced responses at the transcriptional level in S. alfredii were highly consistent with those at the physiological level. Some of these genes have been confirmed to be related to heavy metal absorption and detoxification, and some were found to be related to heavy metal tolerance for the first time in this study, like Metacaspase-1 and EDR6. These results provide a theoretical basis for the use of genetic engineering technology to modify plants by enhancing multi-metal tolerance to promote phytoremediation efficiency.


Assuntos
Biodegradação Ambiental , Metais Pesados , Sedum , Poluentes do Solo , Adaptação Fisiológica , Antioxidantes/metabolismo , Cádmio/metabolismo , Perfilação da Expressão Gênica , Chumbo/análise , Metais Pesados/análise , Metais Pesados/metabolismo , Raízes de Plantas/metabolismo , Sedum/genética , Sedum/metabolismo , Sedum/fisiologia , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
2.
Micromachines (Basel) ; 15(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38930654

RESUMO

In this paper, a novel 4H-SiC deep-trench super-junction MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) with a split-gate is proposed and theoretically verified by Sentaurus TCAD simulations. A deep trench filled with P-poly-Si combined with the P-SiC region leads to a charge balance effect. Instead of a full-SiC P region in conventional super-junction MOSFET, this new structure reduces the P region in a super-junction MOSFET, thus helping to lower the specific on-resistance. As a result, the figure of merit (FoM, BV2/Ron,sp) of the proposed new structure is 642% and 39.65% higher than the C-MOS and the SJ-MOS, respectively.

3.
Micromachines (Basel) ; 14(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985094

RESUMO

Single-event gate-rupture (SEGR) in the trench vertical double-diffused power MOSFET (VDMOS) occurs at a critical bias voltage during heavy-ion experiments. Fault analysis demonstrates that the hot spot is located at the termination of the VDMOS, and the gate oxide in the termination region has been damaged. The SEGR-hardened termination with multiple implantation regions is proposed and simulated using the Sentaurus TCAD. The multiple implantation regions are introduced, leading to an increase in the distance between the gate oxide and the hole accumulation region, as well as a decrease in the resistivity of the hole conductive path. This approach is effective in reducing the electric field of the gate oxide to below the calculated critical field, and results in a lower electric field than the conventional termination.

4.
Micromachines (Basel) ; 14(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241697

RESUMO

The single-event effect reliability issue is one of the most critical concerns in the context of space applications for SiC VDMOS. In this paper, the SEE characteristics and mechanisms of the proposed deep trench gate superjunction (DTSJ), conventional trench gate superjunction (CTSJ), conventional trench gate (CT), and conventional planar gate (CT) SiC VDMOS are comprehensively analyzed and simulated. Extensive simulations demonstrate the maximum SET current peaks of DTSJ-, CTSJ-, CT-, and CP SiC VDMOS, which are 188 mA, 218 mA, 242 mA, and 255 mA, with a bias voltage VDS of 300 V and LET = 120 MeV·cm2/mg, respectively. The total charges of DTSJ-, CTSJ-, CT-, and CP SiC VDMOS collected at the drain are 320 pC, 1100 pC, 885 pC, and 567 pC, respectively. A definition and calculation of the charge enhancement factor (CEF) are proposed. The CEF values of DTSJ-, CTSJ-, CT-, and CP SiC VDMOS are 43, 160, 117, and 55, respectively. Compared with CTSJ-, CT-, and CP SiC VDMOS, the total charge and CEF of the DTSJ SiC VDMOS are reduced by 70.9%, 62.4%, 43.6% and 73.1%, 63.2%, and 21.8%, respectively. The maximum SET lattice temperature of the DTSJ SiC VDMOS is less than 2823 K under the wide operating conditions of a drain bias voltage VDS ranging from 100 V to 1100 V and a LET value ranging from 1 MeV·cm2/mg to 120 MeV·cm2/mg, while the maximum SET lattice temperatures of the other three SiC VDMOS significantly exceed 3100 K. The SEGR LET thresholds of DTSJ-, CTSJ-, CT-, and CP SiC VDMOS are approximately 100 MeV·cm2/mg, 15 MeV·cm2/mg, 15 MeV·cm2/mg, and 60 MeV·cm2/mg, respectively, while the value of VDS = 1100 V.

5.
Toxics ; 10(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893843

RESUMO

Cadmium (Cd) is a heavy metal that is highly toxic for plants, animals, and human beings. A better understanding of the mechanisms involved in Cd accumulation in plants is beneficial for developing strategies for either the remediation of Cd-polluted soils using hyperaccumulator plants or preventing excess Cd accumulation in the edible parts of crops and vegetables. As a ubiquitous heavy metal, the transport of Cd in plant cells is suggested to be mediated by transporters for essential elements such as Ca, Zn, K, and Mn. Identification of the genes encoding Cd transporters is important for understanding the mechanisms underlying Cd uptake, translocation, and accumulation in either crop or hyperaccumulator plants. Recent studies have shown that the transporters that mediate the uptake, transport, and accumulation of Cd in plants mainly include members of the natural resistance-associated macrophage protein (Nramp), heavy metal-transporting ATPase (HMA), zinc and iron regulated transporter protein (ZIP), ATP-binding cassette (ABC), and yellow stripe-like (YSL) families. Here, we review the latest advances in the research of these Cd transporters and lay the foundation for a systematic understanding underlying the molecular mechanisms of Cd uptake, transport, and accumulation in plants.

6.
Comput Intell Neurosci ; 2022: 1023865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528367

RESUMO

The purpose of this paper is to understand the digital 3D multimedia panoramic visual communication technology based on virtual reality. Firstly, the key concepts and characteristics of virtual reality are introduced, including the development and application of digital three-dimensional panorama technology. Then, according to the theoretical research, some basic knowledge of 3D panoramic image Mosaic is introduced, including camera image modeling, image sharing, and image exchange. Finally, with the development of the virtual tour at the College of Normal University, the hardware of panoramic technology and the demand of panoramic image search have been expanded in the application. The design of panoramic Mosaic, panoramic image generation, and virtual tour school construction considers real-world issues. The innovation of this paper lies in that will be used by SketchUp8.0 software builds the geometry of 3d virtual scene and by the cylindrical panoramic images based on image of building 3 d virtual scene organic unifies in together and makes a panoramic image can be as the change of seasons in the real scene and real-time change, enhance the sense of the reality of the system and user immersive.


Assuntos
Realidade Virtual , Humanos , Imageamento Tridimensional , Software , Tecnologia
7.
Life (Basel) ; 12(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35629434

RESUMO

Zn pollution is a potential toxicant for agriculture and the environment. Sedum alfredii is a Zn/Cd hyperaccumulator found in China and has been proven as a useful resource for the phytoremediation of Zn-contaminated sites. However, the molecular mechanism of Zn uptake in S. alfredii is limited. In this study, the function of SaPCR2 on Zn uptake in S. alfredii was identified by gene expression analysis, yeast function assays, Zn accumulation and root morphology analysis in transgenic lines to further elucidate the mechanisms of uptake and translocation of Zn in S. alfredii. The results showed that SaPCR2 was highly expressed in the root elongation zone of the hyperaccumulating ecotype (HE) S. alfredii, and high Zn exposure downregulated the expression of SaPCR2 in the HE S. alfredii root. The heterologous expression of SaPCR2 in yeast suggested that SaPCR2 was responsible for Zn influx. The overexpression of SaPCR2 in the non-hyperaccumulating ecotype (NHE) S. alfredii significantly increased the root uptake of Zn, but did not influence Mn, Cu or Fe. SR-µ-XRF technology showed that more Zn was distributed in the vascular buddle tissues, as well as in the cortex and epidermis in the transgenic lines. Root morphology was also altered after SaPCR2 overexpression, and a severe inhibition was observed. In the transgenic lines, the meristematic and elongation zones of the root were lower compared to the WT, and Zn accumulation in meristem cells was also reduced. These results indicate that SaPCR2 is responsible for Zn uptake, and mainly functions in the root elongation zone. This research on SaPCR2 could provide a theoretical basis for the use of genetic engineering technology in the modification of crops for their safe production and biological enhancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA