Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gene Ther ; 21(4): 363-70, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500525

RESUMO

Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.


Assuntos
Proteínas do Capsídeo/imunologia , Imunidade Inata , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Animais , Proteínas do Capsídeo/genética , Dependovirus/genética , Dependovirus/imunologia , Cães , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/imunologia , Humanos , Modelos Animais , Distrofia Muscular Animal/imunologia , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/terapia , Vírion/imunologia
2.
Nat Genet ; 16(4): 402-6, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9241282

RESUMO

Myotonic dystrophy, or dystrophia myotonica (DM), is an autosomal dominant multisystem disorder caused by the expansion of a CTG trinucleotide repeat in the 3' untranslated region of the DMPK protein kinase gene on chromosome 19q13.3 (refs 1-3). Although the DM mutation was identified more than five years ago, the pathogenic mechanisms underlying this most prevalent form of hereditary adult neuromuscular disease remain elusive. Previous work from our laboratory demonstrated that a DNase l-hypersensitive site located adjacent to the repeats on the wild-type allele is eliminated by repeat expansion, indicating that large CTG-repeat arrays may be associated with a local chromatin environment that represses gene expression. Here we report that the hypersensitive site contains an enhancer element that regulates transcription of the adjacent DMAHP homeobox gene. Analysis of DMAHP expression in the cells of DM patients with loss of the hypersensitive site revealed a two- to fourfold reduction in steady-state DMAHP transcript levels relative to wild-type controls. Allele-specific analysis of DMAHP expression showed that steady-state transcript levels from the expanded allele were greatly reduced in comparison to those from the wild-type allele. Together, these results demonstrate that CTG-repeat expansions can suppress local gene expression and implicate DMAHP in DM pathogenesis.


Assuntos
Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Distrofia Miotônica/genética , Repetições de Trinucleotídeos , Animais , Sequência de Bases , Linhagem Celular , Mapeamento Cromossômico , Humanos , Camundongos , Dados de Sequência Molecular , Miotonina Proteína Quinase , Proteínas Serina-Treonina Quinases/genética
3.
Nat Genet ; 25(1): 105-9, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10802667

RESUMO

Expansion of a CTG trinucleotide repeat in the 3' UTR of the gene DMPK at the DM1 locus on chromosome 19 causes myotonic dystrophy, a dominantly inherited disease characterized by skeletal muscle dystrophy and myotonia, cataracts and cardiac conduction defects. Targeted deletion of Dm15, the mouse orthologue of human DMPK, produced mice with a mild myopathy and cardiac conduction abnormalities, but without other features of myotonic dystrophy, such as myotonia and cataracts. We, and others, have demonstrated that repeat expansion decreases expression of the adjacent gene SIX5 (refs 7,8), which encodes a homeodomain transcription factor. To determine whether SIX5 deficiency contributes to the myotonic dystrophy phenotype, we disrupted mouse Six5 by replacing the first exon with a beta-galactosidase reporter. Six5-mutant mice showed reporter expression in multiple tissues, including the developing lens. Homozygous mutant mice had no apparent abnormalities of skeletal muscle function, but developed lenticular opacities at a higher rate than controls. Our results suggest that SIX5 deficiency contributes to the cataract phenotype in myotonic dystrophy, and that myotonic dystrophy represents a multigenic disorder.


Assuntos
Catarata/etiologia , Catarata/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Distrofia Miotônica/genética , Regiões 3' não Traduzidas/genética , Animais , Catarata/enzimologia , Catarata/patologia , Éxons/genética , Marcação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distrofia Miotônica/enzimologia , Miotonina Proteína Quinase , Proteínas Serina-Treonina Quinases/genética , Expansão das Repetições de Trinucleotídeos/genética
4.
Nat Genet ; 28(4): 335-43, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11479593

RESUMO

An expansion of a CTG repeat at the DM1 locus causes myotonic dystrophy (DM) by altering the expression of the two adjacent genes, DMPK and SIX5, and through a toxic effect of the repeat-containing RNA. Here we identify two CTCF-binding sites that flank the CTG repeat and form an insulator element between DMPK and SIX5. Methylation of these sites prevents binding of CTCF, indicating that the DM1 locus methylation in congenital DM would disrupt insulator function. Furthermore, CTCF-binding sites are associated with CTG/CAG repeats at several other loci. We suggest a general role for CTG/CAG repeats as components of insulator elements at multiple sites in the human genome.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Distrofia Miotônica/genética , Proteínas Repressoras , Fatores de Transcrição/metabolismo , Repetições de Trinucleotídeos/genética , Sítios de Ligação/fisiologia , Fator de Ligação a CCCTC , Linhagem Celular , Sistema Livre de Células , Ilhas de CpG/genética , Proteínas de Homeodomínio/genética , Humanos , Dados de Sequência Molecular , Miotonina Proteína Quinase , Matriz Nuclear/metabolismo , Nucleossomos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Homologia de Sequência do Ácido Nucleico
5.
Sci Rep ; 10(1): 17547, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067535

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is caused by the expression of DUX4 in skeletal muscles. A number of therapeutic approaches are being developed to antagonize the events preceding and following DUX4 expression that leads to muscular dystrophy. Currently, the possibility to evaluate treatment response in clinical trials is hampered by the lack of objective molecular biomarkers connecting the disease cause to clinical performance. In this study we employed RNA-seq to examine gene expression in PAXgene tubes obtained from two independent cohorts of FSHD patients. Analysis of gene expression profiles did not lead to the identification of genes or pathways differentially expressed in FSHD patients, or associated with disease severity. In particular, we did not find evidence that the DUX4 and PAX7 signatures were differentially expressed. On the other hand, we were able to improve patient classification by including single genes or groups of genes in classification models. The best classifier was ROPN1L, a gene known to be expressed in testis, coincidentally the typical location of DUX4 expression. These improvements in patient classification hold the potential to enrich the FSHD clinical trial toolbox.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/sangue , Proteínas de Homeodomínio/sangue , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/sangue , Fator de Transcrição PAX7/sangue , Adulto , Idoso , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular Facioescapuloumeral/genética , RNA-Seq
6.
J Cell Biol ; 90(2): 300-8, 1981 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-6116716

RESUMO

Taxol has the following effects on myogenic cultures: (a) it blocks cell replication of presumptive myoblasts and fibroblasts. (b) It induces the aggregation of microtubules into sheets or massive cables in presumptive myoblasts and fibroblasts, but not in postmitotic, mononucleated myoblasts. (c) It induces normally elongated postmitotic myoblasts to form stubby, star-shaped cells. (d) It reversibly blocks the fusion of the star-shaped myoblasts into multinucleated myotubes. (e) It augments the number of microtubules in postmitotic myoblasts, and these are assembled into interdigitating arrays of microtubules and myosin filaments. (f) Actin filaments are largely excluded from these interdigitating microtubule-myosin complexes. (g) The myosin filaments in the interdigitating microtubule-myosin arrays are aligned laterally, forming A-bands approximately 1.5 micrometers long.


Assuntos
Alcaloides/farmacologia , Citoesqueleto/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Músculos/citologia , Animais , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Citoesqueleto/ultraestrutura , Fibroblastos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Músculos/efeitos dos fármacos , Miosinas , Paclitaxel
7.
Science ; 289(5485): 1701-2, 2000 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-11001736

RESUMO

Triplet repeat diseases are disorders in which there is expansion of a repeat sequence of three nucleotides in the affected gene. Although the pathology usually results from production of a defective protein, myotonic dystrophy (DM) has proved to be a puzzle because the expanded repeats appear in a non-coding region of the affected DMPK gene. In a Perspective, Tapscott explains how findings from a new mouse model of DM (Mankodi et al.) could solve this paradox.


Assuntos
Distrofia Miotônica/genética , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Expansão das Repetições de Trinucleotídeos , Regiões 3' não Traduzidas , Animais , Antecipação Genética , Catarata/etiologia , Cromossomos Humanos Par 19 , Cromossomos Humanos Par 3 , Modelos Animais de Doenças , Regulação da Expressão Gênica , Sistema de Condução Cardíaco/fisiopatologia , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Distrofia Miotônica/fisiopatologia , Miotonina Proteína Quinase , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
Science ; 259(5100): 1450-3, 1993 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-8383879

RESUMO

Rhabdomyosarcoma cells express the myogenic helix-loop-helix proteins of the MyoD family but do not differentiate into skeletal muscle cells. Gel shift and transient transfection assays revealed that MyoD in the rhabdomyosarcoma cells was capable of binding DNA but was relatively nonfunctional as a transcriptional activator. Heterokaryon formation with fibroblasts resulted in the restoration of transcriptional activation by MyoD and the differentiation of the rhabdomyosarcoma cells into skeletal muscle cells. These results suggest that rhabdomyosarcomas are deficient in a factor required for MyoD activity.


Assuntos
Proteínas Musculares/metabolismo , Rabdomiossarcoma/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Humanos , Camundongos , Proteínas Musculares/genética , Músculos/patologia , Proteína MyoD , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Transcrição Gênica , Transfecção , Células Tumorais Cultivadas
9.
Science ; 245(4917): 532-6, 1989 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-2547249

RESUMO

The pyrimidine analog 5-bromodeoxyuridine (BUdR) competes with thymidine for incorporation into DNA. Substitution of BUdR for thymidine does not significantly affect cell viability but does block cell differentiation in many different lineages. BUdR substitution in a mouse myoblast line blocked myogenic differentiation and extinguished the expression of the myogenic determination gene MyoD1. Forced expression of MyoD1 from a transfected expression vector in a BUdR-substituted myoblast overcame the block to differentiation imposed by BUdR. Activation of BUdR-substituted muscle structural genes and apparently normal differentiation were observed in transfected myoblasts. This shows that BUdR blocks myogenesis at the level of a myogenic regulatory gene, possibly MyoD1, not by directly inhibiting the activation of muscle structural genes. It is consistent with the idea that BUdR selectively blocks a class of regulatory genes, each member of which is important for the development of a different cell lineage.


Assuntos
Bromodesoxiuridina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Musculares/genética , Músculos/citologia , Proteínas Nucleares/genética , Animais , Bromodesoxiuridina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Creatina Quinase/genética , DNA/metabolismo , Desmina/genética , Genes , Camundongos , Miogenina , Plasmídeos , RNA Mensageiro/genética , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica , Transfecção
10.
Science ; 212(4494): 567-9, 1981 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-6163217

RESUMO

A protein of molecular size 180 kilodaltons is associated with 10-nanometer filaments in neurons and is immunologically distinct from smaller putative neurofilament subunits and from 10-nanometer filament proteins in nonneuronal cells, such as myotubes and fibroblasts. Neurons do not contain vimentin, the major filament protein in many other cells, including the nonneuronal cells in cultures of neural tissue.


Assuntos
Citoesqueleto/ultraestrutura , Proteínas do Tecido Nervoso/análise , Animais , Desmina , Epitopos , Fibroblastos/análise , Proteína Glial Fibrilar Ácida , Queratinas/análise , Peso Molecular , Proteínas Musculares/análise , Proteínas do Tecido Nervoso/imunologia , Proteínas de Neurofilamentos , Medula Espinal/análise , Vimentina
11.
Science ; 242(4877): 405-11, 1988 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-3175662

RESUMO

Expression of a complementary DNA (cDNA) encoding the mouse MyoD1 protein in a variety of fibroblast and adipoblast cell lines converts them to myogenic cells. Polyclonal antisera to fusion proteins containing the MyoD1 sequence show that MyoD1 is a phosphoprotein present in the nuclei of proliferating myoblasts and differentiated myotubes but not expressed in 10T1/2 fibroblasts or other nonmuscle cell types. Functional domains of the MyoD1 protein were analyzed by site-directed deletional mutagenesis of the MyoD1 cDNA. Deletion of a highly basic region (residues 102 to 135) interferes with both nuclear localization and induction of myogenesis. Deletion of a short region (residues 143 to 162) that is similar to a conserved region in the c-Myc family of proteins eliminates the ability of the MyoD1 protein to initiate myogenesis but does not alter nuclear localization. Deletions of regions spanning the remainder of MyoD1 did not affect nuclear localization and did not inhibit myogenesis. Furthermore, expression of only 68 amino acids of MyoD1, containing the basic and the Myc similarity domains, is sufficient to activate myogenesis in stably transfected 10T1/2 cells. Genetic analysis maps the MyoD1 gene to mouse chromosome 7 and human chromosome 11.


Assuntos
Genes , Proteína MyoD , Proteínas Nucleares/genética , Oncogenes , Fosfoproteínas/genética , Animais , Diferenciação Celular , Divisão Celular , Células Cultivadas , Mapeamento Cromossômico , DNA/genética , Fibroblastos/citologia , Humanos , Camundongos , Músculos/citologia , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia
12.
Curr Opin Genet Dev ; 8(2): 245-53, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9610417

RESUMO

Fragile-X syndrome and myotonic dystrophy are caused by triplet repeat expansions embedded in CpG islands in the transcribed non-coding regions of the FMR1 and the DMPK genes, respectively. Although initial reports emphasized differences in the mechanisms by which the expanded triplet repeats caused these diseases, results published in the past year highlight remarkable parallels in the likely molecular etiologies. At both loci, expansion is associated with altered chromatin, aberrant methylation, and suppressed expression of the adjacent FMR1 and DMAHP genes, implicating epigenetic mediation of these genetic diseases.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Distrofia Miotônica/genética , Animais , Síndrome do Cromossomo X Frágil/diagnóstico , Humanos
14.
Mol Cell Biol ; 16(7): 3901-8, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8668208

RESUMO

Basic helix-loop-helix (bHLH) proteins mediate terminal differentiation in many lineages. By using the bHLH protein MyoD, which can dominantly activate the myogenic differentiation program in numerous cell types, we demonstrated that recessive defects in bHLH protein function are present in human tumor lines. In contrast to prior work with primary cell cultures, MyoD did not activate the myogenic program in six of the eight tumor lines we tested. Cell fusions between the MyoD-defective lines and fibroblasts restored MyoD activity, indicating that the deficiency of a gene or factor prevents bHLH protein function in the tumor lines. Fusions between certain pairings of the MyoD-defective lines also restored MyoD activity, allowing the tumor lines to be assigned to complementation groups on the basis of their ability to execute the myogenic program and indicating that multiple mechanisms exist for abrogation of bHLH protein activity. These groups provide a basis for identifying genes critical for bHLH-mediated differentiation and tumor progression by using genetic complementation.


Assuntos
Sequências Hélice-Alça-Hélice , Proteína MyoD/metabolismo , Neoplasias Encefálicas , Comunicação Celular , Diferenciação Celular , Fusão Celular , Linhagem Celular , Neoplasias Cerebelares , Fibroblastos , Expressão Gênica , Glioblastoma , Humanos , Meduloblastoma , Músculo Esquelético , Proteína MyoD/análise , Proteína MyoD/biossíntese , Neuroblastoma , Células Tumorais Cultivadas
15.
Mol Cell Biol ; 21(7): 2404-12, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11259589

RESUMO

The myogenic basic helix-loop-helix (bHLH) proteins regulate both skeletal muscle specification and differentiation: MyoD and Myf5 establish the muscle lineage, whereas myogenin mediates differentiation. Previously, we demonstrated that MyoD was more efficient than myogenin at initiating the expression of skeletal muscle genes, and in this study we present the molecular basis for this difference. A conserved amphipathic alpha-helix in the carboxy terminus of the myogenic bHLH proteins has distinct activities in MyoD and myogenin: the MyoD helix facilitates the initiation of endogenous gene expression, whereas the myogenin helix functions as a general transcriptional activation domain. Thus, the alternate use of a similar motif for gene initiation and activation provides a molecular basis for the distinction between specification and differentiation within the myogenic bHLH gene family.


Assuntos
Proteínas de Ligação a DNA , Regulação da Expressão Gênica/fisiologia , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiologia , Proteína MyoD/fisiologia , Transativadores , Fatores de Transcrição/fisiologia , Células 3T3 , Sequência de Aminoácidos , Animais , Diferenciação Celular/fisiologia , Sequências Hélice-Alça-Hélice , Camundongos , Dados de Sequência Molecular , Contração Muscular/fisiologia , Músculo Esquelético/citologia , Fator Regulador Miogênico 5
16.
Mol Cell Biol ; 12(11): 4994-5003, 1992 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-1328870

RESUMO

The MyoD gene can orchestrate the expression of the skeletal muscle differentiation program. We have identified the regions of the gene necessary to reproduce transcription specific to skeletal myoblasts and myotubes. A proximal regulatory region (PRR) contains a conserved TATA box, a CCAAT box, and a GC-rich region that includes a consensus SP1 binding site. The PRR is sufficient for high levels of skeletal muscle-specific activity in avian muscle cells. In murine cells the PRR alone has only low levels of activity and requires an additional distal regulatory region to achieve high levels of muscle-specific activity. The distal regulatory region differs from a conventional enhancer in that chromosomal integration appears necessary for productive interactions with the PRR. While the Moloney leukemia virus long terminal repeat can enhance transcription from the MyoD PRR in both transient and stable assays, the simian virus 40 enhancer cannot, suggesting that specific enhancer-promoter interactions are necessary for PRR function.


Assuntos
Elementos Facilitadores Genéticos , Proteínas Musculares/genética , Músculos/metabolismo , Fatores de Transcrição/genética , Animais , Sequência de Bases , Proteínas Estimuladoras de Ligação a CCAAT , Diferenciação Celular/genética , Embrião de Galinha , Clonagem Molecular , DNA , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Camundongos , Dados de Sequência Molecular , Músculos/citologia , Proteína MyoD , Especificidade de Órgãos/genética
17.
Mol Cell Biol ; 12(11): 5123-30, 1992 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-1328872

RESUMO

Sodium butyrate reversibly inhibits muscle differentiation and blocks the expression of many muscle-specific genes in both proliferating myoblasts and differentiated myotubes. We investigated the role of the basic helix-loop-helix (bHLH) myogenic determinator proteins MyoD and myogenin in this inhibition. Our data suggest that both MyoD and myogenin are not able to function as transcriptional activators in the presence of butyrate, although both apparently retain the ability to bind DNA. Transcription of MyoD itself is extinguished in butyrate-treated myoblasts and myotubes, an effect that may be due to the inability of MyoD to autoactivate its own transcription. We present evidence that the HLH region of MyoD is essential for butyrate inhibition of MyoD. In contrast to MyoD and myogenin, butyrate does not inhibit the ubiquitous basic HLH protein E2-5 from functioning as a transcriptional activator.


Assuntos
Butiratos/farmacologia , Proteínas Musculares/antagonistas & inibidores , Músculos/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Sequência de Bases , Ácido Butírico , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , DNA , Regulação da Expressão Gênica , Dados de Sequência Molecular , Proteínas Musculares/genética , Músculos/citologia , Mutação , Proteína MyoD , Miogenina , Especificidade de Órgãos/genética , Ligação Proteica
18.
Mol Cell Biol ; 16(9): 5048-57, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8756663

RESUMO

One obvious phenotype of tumor cells is the lack of terminal differentiation. We previously classified rhabdomyosarcoma cell lines as having either a recessive or a dominant nondifferentiating phenotype. To study the genetic basis of the dominant nondifferentiating phenotype, we utilized microcell fusion to transfer chromosomes from rhabdomyosarcoma cells into C2C12 myoblasts. Transfer of a derivative chromosome 14 inhibits differentiation. The derivative chromosome 14 contains a DNA amplification. MDM2 is amplified and overexpressed in these nondifferentiating hybrids and in the parental rhabdomyosarcoma. Forced expression of MDM2 inhibits MyoD-dependent transcription. Expression of antisense MDM2 restores MyoD-dependent transcriptional activity. We conclude that amplification and overexpression of MDM2 inhibit MyoD function, resulting in a dominant nondifferentiating phenotype.


Assuntos
Amplificação de Genes , Células Híbridas/patologia , Proteínas Musculares/fisiologia , Músculos/citologia , Proteína MyoD/antagonistas & inibidores , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares , Proteínas Proto-Oncogênicas/fisiologia , Rabdomiossarcoma/genética , Animais , Ciclo Celular , Diferenciação Celular , Fusão Celular , Cromossomos Humanos Par 14/genética , Epistasia Genética , Regulação da Expressão Gênica , Humanos , Camundongos , Proteínas Musculares/genética , Proteína MyoD/fisiologia , Proteínas de Neoplasias/genética , Fenótipo , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2 , Rabdomiossarcoma/patologia , Transcrição Gênica , Células Tumorais Cultivadas
19.
Mol Cell Biol ; 16(10): 5792-800, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8816493

RESUMO

We have identified two new genes, neuroD2 and neuroD3, on the basis of their similarity to the neurogenic basic-helix-loop-helix (bHLH) gene neuroD. The predicted amino acid sequence of neuroD2 shows a high degree of homology to neuroD and MATH-2/NEX-1 in the bHLH region, whereas neuroD3 is a more distantly related family member. neuroD3 is expressed transiently during embryonic development, with the highest levels of expression between days 10 and 12. neuroD2 is initially expressed at embryonic day 11, with persistent expression in the adult nervous system. In situ and Northern (RNA) analyses demonstrate that different regions of the adult nervous system have different relative amounts of neuroD and neuroD2 RNA. Similar to neuroD, expression of neuroD2 in developing Xenopus laevis embryos results in ectopic neurogenesis, indicating that neuroD2 mediates neuronal differentiation. Transfection of vectors expressing neuroD and neuroD2 into P19 cells shows that both can activate expression through simple E-box-driven reporter constructs and can activate a reporter driven by the neuroD2 promoter region, but the GAP-43 promoter is preferentially activated by neuroD2. The noncongruent expression pattern and target gene specificity of these highly related neurogenic bHLH proteins make them candidates for conferring specific aspects of the neuronal phenotype.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Família Multigênica , Neuropeptídeos/biossíntese , Fatores de Transcrição/biossíntese , Ativação Transcricional , Adulto , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Encéfalo/metabolismo , Linhagem Celular , Drosophila melanogaster , Embrião de Mamíferos , Embrião não Mamífero , Desenvolvimento Embrionário e Fetal , Feto , Fibroblastos , Biblioteca Genômica , Sequências Hélice-Alça-Hélice , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso , Neuropeptídeos/química , Fases de Leitura Aberta , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Transfecção , Xenopus laevis
20.
Mol Cell Biol ; 21(5): 1866-73, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11238923

RESUMO

We have determined that I-mfa, an inhibitor of several basic helix-loop-helix (bHLH) proteins, and XIC, a Xenopus ortholog of human I-mf domain-containing protein that shares a highly conserved cysteine-rich C-terminal domain with I-mfa, inhibit the activity and DNA binding of the HMG box transcription factor XTcf3. Ectopic expression of I-mfa or XIC in early Xenopus embryos inhibited dorsal axis specification, the expression of the Tcf3/beta-catenin-regulated genes siamois and Xnr3, and the ability of beta-catenin to activate reporter constructs driven by Lef/Tcf binding sites. I-mfa domain proteins can regulate both the Wnt signaling pathway and a subset of bHLH proteins, possibly coordinating the activities of these two critical developmental pathways.


Assuntos
Proteínas de Ciclo Celular , Proteínas HMGB , Fatores de Regulação Miogênica/metabolismo , Transativadores , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor , Proteínas de Xenopus , Xenopus/embriologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Western Blotting , Inibidor de Quinase Dependente de Ciclina p27 , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Genes Reporter , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Fatores de Regulação Miogênica/química , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição TCF , Proteína 1 Semelhante ao Fator 7 de Transcrição , Fator de Crescimento Transformador beta/metabolismo , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA