Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 24(1): 63-78, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35918535

RESUMO

Curved membranes are key features of intracellular organelles, and their generation involves dynamic protein complexes. Here we describe the fundamental mechanisms such as the hydrophobic insertion, scaffolding and crowding mechanisms these proteins use to produce membrane curvatures and complex shapes required to form intracellular organelles and vesicular structures involved in endocytosis and secretion. For each mechanism, we discuss its cellular functions as well as the underlying physical principles and the specific membrane properties required for the mechanism to be feasible. We propose that the integration of individual mechanisms into a highly controlled, robust process of curvature generation often relies on the assembly of proteins into coats. How cells unify and organize the curvature-generating factors at the nanoscale is presented for three ubiquitous coats central for membrane trafficking in eukaryotes: clathrin-coated pits, caveolae, and COPI and COPII coats. The emerging theme is that these coats arrange and coordinate curvature-generating factors in time and space to dynamically shape membranes to accomplish membrane trafficking within cells.


Assuntos
Organelas , Proteínas , Membranas/metabolismo , Proteínas/metabolismo , Organelas/metabolismo , Membrana Celular/metabolismo , Endocitose , Clatrina/metabolismo
3.
Nature ; 564(7734): E6, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30377313

RESUMO

In Figs. 2b and 3d of this Letter, the labels 'Dynamin 1' and 'Overlay' were inadvertently swapped. This has been corrected online.

4.
Nature ; 560(7717): 258-262, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069048

RESUMO

Membrane fission is a fundamental process in the regulation and remodelling of cell membranes. Dynamin, a large GTPase, mediates membrane fission by assembling around, constricting and cleaving the necks of budding vesicles1. Here we report a 3.75 Å resolution cryo-electron microscopy structure of the membrane-associated helical polymer of human dynamin-1 in the GMPPCP-bound state. The structure defines the helical symmetry of the dynamin polymer and the positions of its oligomeric interfaces, which were validated by cell-based endocytosis assays. Compared to the lipid-free tetramer form2, membrane-associated dynamin binds to the lipid bilayer with its pleckstrin homology domain (PHD) and self-assembles across the helical rungs via its guanine nucleotide-binding (GTPase) domain3. Notably, interaction with the membrane and helical assembly are accommodated by a severely bent bundle signalling element (BSE), which connects the GTPase domain to the rest of the protein. The BSE conformation is asymmetric across the inter-rung GTPase interface, and is unique compared to all known nucleotide-bound states of dynamin. The structure suggests that the BSE bends as a result of forces generated from the GTPase dimer interaction that are transferred across the stalk to the PHD and lipid membrane. Mutations that disrupted the BSE kink impaired endocytosis. We also report a 10.1 Å resolution cryo-electron microscopy map of a super-constricted dynamin polymer showing localized conformational changes at the BSE and GTPase domains, induced by GTP hydrolysis, that drive membrane constriction. Together, our results provide a structural basis for the mechanism of action of dynamin on the lipid membrane.


Assuntos
Biopolímeros/química , Biopolímeros/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Dinamina I/metabolismo , Dinamina I/ultraestrutura , Biopolímeros/genética , Membrana Celular/química , Dinamina I/química , Dinamina I/genética , Endocitose/genética , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Mutação , Domínios Proteicos , Multimerização Proteica
5.
Nat Methods ; 20(12): 1874-1876, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932396
6.
Nat Methods ; 15(6): 425-428, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735999

RESUMO

We combined instant structured illumination microscopy (iSIM) with total internal reflection fluorescence microscopy (TIRFM) in an approach referred to as instant TIRF-SIM, thereby improving the lateral spatial resolution of TIRFM to 115 ± 13 nm without compromising speed, and enabling imaging frame rates up to 100 Hz over hundreds of time points. We applied instant TIRF-SIM to multiple live samples and achieved rapid, high-contrast super-resolution imaging close to the coverslip surface.


Assuntos
Microscopia de Fluorescência/métodos , Linhagem Celular Tumoral , Humanos , Microtúbulos , Osteossarcoma , Proteínas rab de Ligação ao GTP/fisiologia
7.
Lipids Health Dis ; 19(1): 195, 2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32829709

RESUMO

BACKGROUND: The regulation of exocytosis is physiologically vital in cells and requires a variety of distinct proteins and lipids that facilitate efficient, fast, and timely release of secretory vesicle cargo. Growing evidence suggests that regulatory lipids act as important lipid signals and regulate various biological processes including exocytosis. Though functional roles of many of these regulatory lipids has been linked to exocytosis, the dynamic behavior of these lipids during membrane fusion at sites of exocytosis in cell culture remains unknown. METHODS: Total internal reflection fluorescence microscopy (TIRF) was used to observe the spatial organization and temporal dynamics (i.e. spatial positioning and timing patterns) of several lipids, and accessory proteins, like lipid kinases and protein kinases, in the form of protein kinase C (PRKC) associated with sites of exocytosis of matrix metalloproteinase-9 (MMP-9) in living MCF-7 cancer cells. RESULTS: Following stimulation with phorbol myristate acetate (PMA) to promote exocytosis, a transient accumulation of several distinct regulatory lipids, lipid kinases, and protein kinases at exocytic sites was observed. This transient accumulation centered at the time of membrane fusion is followed by a rapid diffusion away from the fusion sites. Additionally, the synthesis of these regulatory lipids, degradation of these lipids, and the downstream effectors activated by these lipids, are also achieved by the recruitment and accumulation of key enzymes at exocytic sites (during the moment of cargo release). This includes key enzymes like lipid kinases, protein kinases, and phospholipases that facilitate membrane fusion and exocytosis of MMP-9. CONCLUSIONS: This work suggests that these regulatory lipids and associated effector proteins are locally synthesized and/or recruited to sites of exocytosis, during membrane fusion and cargo release. More importantly, their enrichment at fusion sites serves as an important spatial and temporal organizing "element" defining individual exocytic sites.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Animais , Western Blotting , Exocitose/genética , Exocitose/fisiologia , Humanos , Células MCF-7 , Microscopia de Fluorescência , Proteína Quinase C/metabolismo , Vesículas Secretórias/metabolismo
9.
Nat Methods ; 11(3): 305-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24464288

RESUMO

We combine super-resolution localization fluorescence microscopy with transmission electron microscopy of metal replicas to locate proteins on the landscape of the cellular plasma membrane at the nanoscale. We validate robust correlation on the scale of 20 nm by imaging endogenous clathrin (in two and three dimensions) and apply the method to find the previously unknown three-dimensional position of the endocytic protein epsin on clathrin-coated structures at the plasma membrane.


Assuntos
Ouro/química , Proteínas de Membrana/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanotubos/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/ultraestrutura , Clatrina/ultraestrutura , Humanos , Proteínas de Membrana/metabolismo
10.
bioRxiv ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38903101

RESUMO

Cellular communication is regulated at the plasma membrane by the interactions of receptor, adhesion, signaling, exocytic, and endocytic proteins. Yet, the composition and control of these nanoscale complexes in response to external cues remain unclear. Here, we use high-resolution and high-throughput fluorescence imaging to map the localization of growth factor receptors and related proteins at single clathrin-coated structures across the plasma membrane of human squamous HSC3 cells. We find distinct protein signatures between control cells and cells stimulated with ligands. Clathrin sites at the plasma membrane are preloaded with some receptors but not others. Stimulation with epidermal growth factor induces a capture and concentration of epidermal growth factor-, fibroblast growth factor-, and low-density lipoprotein-receptors (EGFR, FGFR, and LDLR). Regulatory proteins including ubiquitin ligase Cbl, the scaffold Grb2, and the mechanoenzyme dynamin2 are also recruited. Disrupting FGFR or EGFR individually with drugs prevents the recruitment of both EGFR and FGFR. Our data reveals novel crosstalk between multiple unrelated receptors and regulatory factors at clathrin-coated sites in response to stimulation by a single growth factor, EGF. This behavior integrates growth factor signaling and allows for complex responses to extracellular cues and drugs at the plasma membrane of human cells.

11.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353656

RESUMO

The ability to dynamically assemble contractile networks is required throughout cell physiology, yet direct biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here, we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the static actin architecture plays a less clear role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin-driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes filament stacks prior to partitioning into clusters that feed higher-order networks. Together, these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.


Assuntos
Citoesqueleto de Actina , Actinas , Miosina Tipo II , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Camundongos , Fibroblastos , Humanos , Células HEK293 , Miosina Tipo II/metabolismo
12.
Dev Cell ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663399

RESUMO

Dynamin assembles as a helical polymer at the neck of budding endocytic vesicles, constricting the underlying membrane as it progresses through the GTPase cycle to sever vesicles from the plasma membrane. Although atomic models of the dynamin helical polymer bound to guanosine triphosphate (GTP) analogs define earlier stages of membrane constriction, there are no atomic models of the assembled state post-GTP hydrolysis. Here, we used cryo-EM methods to determine atomic structures of the dynamin helical polymer assembled on lipid tubules, akin to necks of budding endocytic vesicles, in a guanosine diphosphate (GDP)-bound, super-constricted state. In this state, dynamin is assembled as a 2-start helix with an inner lumen of 3.4 nm, primed for spontaneous fission. Additionally, by cryo-electron tomography, we trapped dynamin helical assemblies within HeLa cells using the GTPase-defective dynamin K44A mutant and observed diverse dynamin helices, demonstrating that dynamin can accommodate a range of assembled complexes in cells that likely precede membrane fission.

13.
Cell Discov ; 10(1): 62, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862506

RESUMO

Membrane budding, which underlies fundamental processes like endocytosis, intracellular trafficking, and viral infection, is thought to involve membrane coat-forming proteins, including the most observed clathrin, to form Ω-shape profiles and helix-forming proteins like dynamin to constrict Ω-profiles' pores and thus mediate fission. Challenging this fundamental concept, we report that polymerized clathrin is required for Ω-profiles' pore closure and that clathrin around Ω-profiles' base/pore region mediates pore constriction/closure in neuroendocrine chromaffin cells. Mathematical modeling suggests that clathrin polymerization at Ω-profiles' base/pore region generates forces from its intrinsically curved shape to constrict/close the pore. This new fission function may exert broader impacts than clathrin's well-known coat-forming function during clathrin (coat)-dependent endocytosis, because it underlies not only clathrin (coat)-dependent endocytosis, but also diverse endocytic modes, including ultrafast, fast, slow, bulk, and overshoot endocytosis previously considered clathrin (coat)-independent in chromaffin cells. It mediates kiss-and-run fusion (fusion pore closure) previously considered bona fide clathrin-independent, and limits the vesicular content release rate. Furthermore, analogous to results in chromaffin cells, we found that clathrin is essential for fast and slow endocytosis at hippocampal synapses where clathrin was previously considered dispensable, suggesting clathrin in mediating synaptic vesicle endocytosis and fission. These results suggest that clathrin and likely other intrinsically curved coat proteins are a new class of fission proteins underlying vesicle budding and fusion. The half-a-century concept and studies that attribute vesicle-coat contents' function to Ω-profile formation and classify budding as coat-protein (e.g., clathrin)-dependent or -independent may need to be re-defined and re-examined by considering clathrin's pivotal role in pore constriction/closure.

14.
Prog Mol Biol Transl Sci ; 194: 159-177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36631191

RESUMO

The B cell receptor (BCR) interacts with foreign antigens to mediate B cell activation and secretion of antibodies. B cell activation begins with initiation of signaling pathways, such as NFAT, NF-κB, and MAPK, and endocytosis of the BCR-antigen complex. Many studies have investigated the signaling pathways associated with BCR activation, and this work has led to significant advances in drug therapies to treat cancer and autoimmune diseases that are linked to aberrant BCR signaling. Less is known, however, about the mechanisms of BCR endocytosis and the role endocytosis plays in B cell pathogenesis. This chapter will review key characteristics of the BCR, including a review of signaling pathways, and endocytic mechanisms associated with the activated BCR. We will also review recent studies investigating the role of BCR endocytosis disease pathogenesis.


Assuntos
Linfócitos B , Receptores de Antígenos de Linfócitos B , Humanos , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Endocitose , Transdução de Sinais , NF-kappa B/metabolismo
15.
Nat Commun ; 14(1): 732, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759616

RESUMO

Conformational changes in endocytic proteins are regulators of clathrin-mediated endocytosis. Three clathrin heavy chains associated with clathrin light chains (CLC) assemble into triskelia that link into a geometric lattice that curves to drive endocytosis. Structural changes in CLC have been shown to regulate triskelia assembly in solution, yet the nature of these changes, and their effects on lattice growth, curvature, and endocytosis in cells are unknown. Here, we develop a new correlative fluorescence resonance energy transfer (FRET) and platinum replica electron microscopy method, named FRET-CLEM. With FRET-CLEM, we measure conformational changes in clathrin at thousands of individual morphologically distinct clathrin-coated structures. We discover that the N-terminus of CLC repositions away from the plasma membrane and triskelia vertex as coats curve. Preventing this conformational switch with chemical tools increases lattice sizes and inhibits endocytosis. Thus, a specific conformational switch in the light chain regulates lattice curvature and endocytosis in mammalian cells.


Assuntos
Cadeias Leves de Clatrina , Endocitose , Animais , Cadeias Leves de Clatrina/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Cadeias Pesadas de Clatrina/metabolismo , Mamíferos/metabolismo
16.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37162845

RESUMO

The ability to dynamically assemble contractile networks is required throughout cell physiology, yet the biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the actin architecture plays a minimal direct role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes sub-resolution filament stacks prior to partitioning into clusters that feed higher-order networks. Together these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.

17.
Nat Biotechnol ; 41(9): 1307-1319, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36702897

RESUMO

The axial resolution of three-dimensional structured illumination microscopy (3D SIM) is limited to ∼300 nm. Here we present two distinct, complementary methods to improve axial resolution in 3D SIM with minimal or no modification to the optical system. We show that placing a mirror directly opposite the sample enables four-beam interference with higher spatial frequency content than 3D SIM illumination, offering near-isotropic imaging with ∼120-nm lateral and 160-nm axial resolution. We also developed a deep learning method achieving ∼120-nm isotropic resolution. This method can be combined with denoising to facilitate volumetric imaging spanning dozens of timepoints. We demonstrate the potential of these advances by imaging a variety of cellular samples, delineating the nanoscale distribution of vimentin and microtubule filaments, observing the relative positions of caveolar coat proteins and lysosomal markers and visualizing cytoskeletal dynamics within T cells in the early stages of immune synapse formation.


Assuntos
Imageamento Tridimensional , Iluminação , Microscopia de Fluorescência/métodos , Imageamento Tridimensional/métodos , Citoesqueleto , Lisossomos
18.
Nat Methods ; 6(7): 532-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19525958

RESUMO

Visualizing conformational dynamics in proteins has been difficult, and the atomic-scale motions responsible for the behavior of most allosteric proteins are unknown. Here we report that fluorescence resonance energy transfer (FRET) between a small fluorescent dye and a nickel ion bound to a dihistidine motif can be used to monitor small structural rearrangements in proteins. This method provides several key advantages over classical FRET, including the ability to measure the dynamics of close-range interactions, the use of small probes with short linkers, a low orientation dependence, and the ability to add and remove unique tunable acceptors. We used this 'transition metal ion FRET' approach along with X-ray crystallography to determine the structural changes of the gating ring of the mouse hyperpolarization-activated cyclic nucleotide-regulated ion channel HCN2. Our results suggest a general model for the conformational switch in the cyclic nucleotide-binding site of cyclic nucleotide-regulated ion channels.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Conformação Proteica , Proteínas/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cátions Bivalentes , Cristalografia por Raios X , AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/química , Canais Iônicos/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Níquel/química , Peptídeos/química , Canais de Potássio , Ligação Proteica , Estrutura Secundária de Proteína
19.
Nat Struct Mol Biol ; 14(9): 854-60, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17694071

RESUMO

For ligand-gated ion channels, the binding of a ligand to an intracellular or extracellular domain generates changes in transmembrane pore-forming helices, which alters ion flow. The molecular mechanism for this allostery, however, remains unknown. Here we explore the structure and conformational rearrangements of the C-terminal gating ring of the cyclic nucleotide-gated channel CNGA1 during activation by cyclic nucleotides with patch-clamp fluorometry. By monitoring fluorescent resonance energy transfer (FRET) between membrane-resident quenchers and fluorophores attached to the channel, we detected no movement orthogonal to the membrane during channel activation. By monitoring FRET between fluorophores within the C-terminal region, we determined that the C-terminal end of the C-linker and the end of the C-helix move apart when channels open. We conclude that during channel activation, a portion of the gating ring moves parallel to the plasma membrane, hinging toward the central axis of the channel.


Assuntos
Ativação do Canal Iônico , Nucleotídeos/química , Regulação Alostérica , Transferência Ressonante de Energia de Fluorescência , Sondas Moleculares , Conformação Proteica
20.
Proc Natl Acad Sci U S A ; 106(38): 16227-32, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805285

RESUMO

The structure and dynamics of proteins underlies the workings of virtually every biological process. Existing biophysical methods are inadequate to measure protein structure at atomic resolution, on a rapid time scale, with limited amounts of protein, and in the context of a cell or membrane. FRET can measure distances between two probes, but depends on the orientation of the probes and typically works only over long distances comparable with the size of many proteins. Also, common probes used for FRET can be large and have long, flexible attachment linkers that position dyes far from the protein backbone. Here, we improve and extend a fluorescence method called transition metal ion FRET that uses energy transfer to transition metal ions as a reporter of short-range distances in proteins with little orientation dependence. This method uses a very small cysteine-reactive dye monobromobimane, with virtually no linker, and various transition metal ions bound close to the peptide backbone as the acceptor. We show that, unlike larger fluorophores and longer linkers, this donor-acceptor pair accurately reports short-range distances and changes in backbone distances. We further extend the method by using cysteine-reactive metal chelators, which allow the technique to be used in protein regions of unknown secondary structure or when native metal ion binding sites are present. This improved method overcomes several of the key limitations of classical FRET for intramolecular distance measurements.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Metais/química , Estrutura Secundária de Proteína , Proteínas/química , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Compostos Bicíclicos com Pontes/química , Dicroísmo Circular , Cisteína/química , Transferência de Energia , Transferência Ressonante de Energia de Fluorescência/métodos , Histidina/química , Ligação Proteica , Conformação Proteica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA