Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(8): 4734-4777, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38579177

RESUMO

This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.


Assuntos
RNA , RNA/química , RNA/metabolismo , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Animais , Conformação de Ácido Nucleico
2.
Chem Rev ; 124(7): 3932-3977, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38535831

RESUMO

Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Humanos , Proteínas/química , Comunicação Celular , Fenômenos Biofísicos
3.
Nucleic Acids Res ; 52(6): e31, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38364867

RESUMO

Proteins are crucial in regulating every aspect of RNA life, yet understanding their interactions with coding and noncoding RNAs remains limited. Experimental studies are typically restricted to a small number of cell lines and a limited set of RNA-binding proteins (RBPs). Although computational methods based on physico-chemical principles can predict protein-RNA interactions accurately, they often lack the ability to consider cell-type-specific gene expression and the broader context of gene regulatory networks (GRNs). Here, we assess the performance of several GRN inference algorithms in predicting protein-RNA interactions from single-cell transcriptomic data, and propose a pipeline, called scRAPID (single-cell transcriptomic-based RnA Protein Interaction Detection), that integrates these methods with the catRAPID algorithm, which can identify direct physical interactions between RBPs and RNA molecules. Our approach demonstrates that RBP-RNA interactions can be predicted from single-cell transcriptomic data, with performances comparable or superior to those achieved for the well-established task of inferring transcription factor-target interactions. The incorporation of catRAPID significantly enhances the accuracy of identifying interactions, particularly with long noncoding RNAs, and enables the identification of hub RBPs and RNAs. Additionally, we show that interactions between RBPs can be detected based on their inferred RNA targets. The software is freely available at https://github.com/tartaglialabIIT/scRAPID.


Assuntos
Proteínas de Ligação a RNA , RNA , Análise da Expressão Gênica de Célula Única , Software , Algoritmos , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Software/normas , Redes Reguladoras de Genes , Humanos , Linhagem Celular
4.
Nucleic Acids Res ; 52(1): e1, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962298

RESUMO

Enhanced crosslinking and immunoprecipitation (eCLIP) sequencing is a method for transcriptome-wide detection of binding sites of RNA-binding proteins (RBPs). However, identified crosslink sites can deviate from experimentally established functional elements of even well-studied RBPs. Current peak-calling strategies result in low replication and high false positive rates. Here, we present the R/Bioconductor package DEWSeq that makes use of replicate information and size-matched input controls. We benchmarked DEWSeq on 107 RBPs for which both eCLIP data and RNA sequence motifs are available and were able to more than double the number of motif-containing binding regions relative to standard eCLIP processing. The improvement not only relates to the number of binding sites (3.1-fold with known motifs for RBFOX2), but also their subcellular localization (1.9-fold of mitochondrial genes for FASTKD2) and structural targets (2.2-fold increase of stem-loop regions for SLBP. On several orthogonal CLIP-seq datasets, DEWSeq recovers a larger number of motif-containing binding sites (3.3-fold). DEWSeq is a well-documented R/Bioconductor package, scalable to adequate numbers of replicates, and tends to substantially increase the proportion and total number of RBP binding sites containing biologically relevant features.


Assuntos
Proteínas de Ligação a RNA , Software , Sítios de Ligação , Imunoprecipitação , Ligação Proteica , RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Nucleic Acids Res ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989616

RESUMO

The combination of morphogenetic and transcription factors together with the synergic aid of noncoding RNAs and their cognate RNA binding proteins contribute to shape motor neurons (MN) identity. Here, we extend the noncoding perspective of human MN, by detailing the molecular and biological activity of CyCoNP (as Cytoplasmic Coordinator of Neural Progenitors) a highly expressed and MN-enriched human lncRNA. Through in silico prediction, in vivo RNA purification and loss of function experiments followed by RNA-sequencing, we found that CyCoNP sustains a specific neuron differentiation program, required for the physiology of both neuroblastoma cells and hiPSC-derived MN, which mainly involves miR-4492 and NCAM1 mRNA. We propose a novel lncRNA-mediated 'dual mode' of action, in which CyCoNP acts in trans as a classical RNA sponge by sequestering miR-4492 from its pro-neuronal targets, including NCAM1 mRNA, and at the same time it plays an additional role in cis by interacting with NCAM1 mRNA and regulating the availability and localization of the miR-4492 in its proximity. These data highlight novel insights into the noncoding RNA-mediated control of human neuron physiology and point out the importance of lncRNA-mediated interactions for the spatial distribution of regulatory molecules.

6.
Nucleic Acids Res ; 51(21): 11466-11478, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37870427

RESUMO

Nucleic acids can act as potent modulators of protein aggregation, and RNA has the ability to either hinder or facilitate protein assembly, depending on the molecular context. In this study, we utilized a computational approach to characterize the physico-chemical properties of regions involved in amyloid aggregation. In various experimental datasets, we observed that while the core is hydrophobic and highly ordered, external regions, which are more disordered, display a distinct tendency to interact with nucleic acids. To validate our predictions, we performed aggregation assays with alpha-synuclein (aS140), a non-nucleic acid-binding amyloidogenic protein, and a mutant truncated at the acidic C-terminus (aS103), which is predicted to have a higher tendency to interact with RNA. For both aS140 and aS103, we observed an acceleration of aggregation upon RNA addition, with a significantly stronger effect for aS103. Due to favorable electrostatics, we noted an enhanced nucleic acid sequestration ability for the aggregated aS103, allowing it to entrap a larger amount of RNA compared to the aggregated wild-type counterpart. Overall, our research suggests that RNA sequestration might be a common phenomenon linked to protein aggregation, constituting a gain-of-function mechanism that warrants further investigation.


Assuntos
Agregados Proteicos , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Agregados Proteicos/genética , RNA/genética , Amiloide/genética , Amiloide/química , Proteínas Amiloidogênicas
7.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592044

RESUMO

SUMMARY: Biological condensates are membraneless organelles with different material properties. Proteins and RNAs are the main components, but most of their interactions are still unknown. Here, we introduce PRALINE, a database for the interrogation of proteins and RNAs contained in stress granules, processing bodies and other assemblies including droplets and amyloids. PRALINE provides information about the predicted and experimentally validated protein-protein, protein-RNA and RNA-RNA interactions. For proteins, it reports the liquid-liquid phase separation and liquid-solid phase separation propensities. For RNAs, it provides information on predicted secondary structure content. PRALINE shows detailed information on human single-nucleotide variants, their clinical significance and presence in protein and RNA binding sites, and how they can affect condensates' physical properties. AVAILABILITY AND IMPLEMENTATION: PRALINE is freely accessible on the web at http://praline.tartaglialab.com.


Assuntos
Organelas , RNA , Humanos , RNA/metabolismo , Proteínas/metabolismo , Nucleotídeos/metabolismo
8.
Acta Neuropathol ; 147(1): 50, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443601

RESUMO

TDP-43 is an aggregation-prone protein which accumulates in the hallmark pathological inclusions of amyotrophic lateral sclerosis (ALS). However, the analysis of deeply phenotyped human post-mortem samples has shown that TDP-43 aggregation, revealed by standard antibody methods, correlates poorly with symptom manifestation. Recent identification of cryptic-splicing events, such as the detection of Stathmin-2 (STMN-2) cryptic exons, are providing evidence implicating TDP-43 loss-of-function as a potential driving pathomechanism but the temporal nature of TDP-43 loss and its relation to the disease process and clinical phenotype is not known. To address these outstanding questions, we used a novel RNA aptamer, TDP-43APT, to detect TDP-43 pathology and used single molecule in situ hybridization to sensitively reveal TDP-43 loss-of-function and applied these in a deeply phenotyped human post-mortem tissue cohort. We demonstrate that TDP-43APT identifies pathological TDP-43, detecting aggregation events that cannot be detected by classical antibody stains. We show that nuclear TDP-43 pathology is an early event, occurring prior to cytoplasmic accumulation and is associated with loss-of-function measured by coincident STMN-2 cryptic splicing pathology. Crucially, we show that these pathological features of TDP-43 loss-of-function precede the clinical inflection point and are not required for region specific clinical manifestation. Furthermore, we demonstrate that gain-of-function in the form of extensive cytoplasmic accumulation, but not loss-of-function, is the primary molecular correlate of clinical manifestation. Taken together, our findings demonstrate implications for early diagnostics as the presence of STMN-2 cryptic exons and early TDP-43 aggregation events could be detected prior to symptom onset, holding promise for early intervention in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Aptâmeros de Nucleotídeos , Humanos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Splicing de RNA , Anticorpos
9.
Nucleic Acids Res ; 50(21): 12400-12424, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35947650

RESUMO

Trimethylguanosine synthase 1 (TGS1) is a highly conserved enzyme that converts the 5'-monomethylguanosine cap of small nuclear RNAs (snRNAs) to a trimethylguanosine cap. Here, we show that loss of TGS1 in Caenorhabditis elegans, Drosophila melanogaster and Danio rerio results in neurological phenotypes similar to those caused by survival motor neuron (SMN) deficiency. Importantly, expression of human TGS1 ameliorates the SMN-dependent neurological phenotypes in both flies and worms, revealing that TGS1 can partly counteract the effects of SMN deficiency. TGS1 loss in HeLa cells leads to the accumulation of immature U2 and U4atac snRNAs with long 3' tails that are often uridylated. snRNAs with defective 3' terminations also accumulate in Drosophila Tgs1 mutants. Consistent with defective snRNA maturation, TGS1 and SMN mutant cells also exhibit partially overlapping transcriptome alterations that include aberrantly spliced and readthrough transcripts. Together, these results identify a neuroprotective function for TGS1 and reinforce the view that defective snRNA maturation affects neuronal viability and function.


Assuntos
Metiltransferases , Neurônios Motores , RNA Nuclear Pequeno , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HeLa , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Fenótipo , RNA Nuclear Pequeno/metabolismo , Metiltransferases/metabolismo
10.
Bioinformatics ; 38(7): 2060-2061, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35020787

RESUMO

MOTIVATION: Thermal properties of proteins are of great importance for a number of theoretical and practical implications. Predicting the thermal stability of a protein is a difficult and still scarcely addressed task. RESULTS: Here, we introduce Thermometer, a webserver to assess the thermal stability of a protein using structural information. Thermometer is implemented as a publicly available, user-friendly interface. AVAILABILITY AND IMPLEMENTATION: Our server can be found at the following link (all major browser supported): http://service.tartaglialab.com/new_submission/thermometer_file. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Termômetros , Estabilidade Proteica , Proteínas , Computadores
11.
IUBMB Life ; 75(5): 411-426, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36057100

RESUMO

RNA molecules undergo a number of chemical modifications whose effects can alter their structure and molecular interactions. Previous studies have shown that RNA editing can impact the formation of ribonucleoprotein complexes and influence the assembly of membrane-less organelles such as stress granules. For instance, N6-methyladenosine (m6A) enhances SG formation and N1-methyladenosine (m1A) prevents their transition to solid-like aggregates. Yet, very little is known about adenosine to inosine (A-to-I) modification that is very abundant in human cells and not only impacts mRNAs but also noncoding RNAs. Here, we introduce the CROSSalive predictor of A-to-I effects on RNA structure based on high-throughput in-cell experiments. Our method shows an accuracy of 90% in predicting the single and double-stranded content of transcripts and identifies a general enrichment of double-stranded regions caused by A-to-I in long intergenic noncoding RNAs (lincRNAs). For the individual cases of NEAT1, NORAD, and XIST, we investigated the relationship between A-to-I editing and interactions with RNA-binding proteins using available CLIP data and catRAPID predictions. We found that A-to-I editing is linked to the alteration of interaction sites with proteins involved in phase separation, which suggests that RNP assembly can be influenced by A-to-I. CROSSalive is available at http://service.tartaglialab.com/new_submission/crossalive.


Assuntos
Adenosina , RNA Longo não Codificante , Humanos , Adenosina/química , RNA não Traduzido/genética , RNA Mensageiro/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Inosina/metabolismo
12.
Bioessays ; 43(6): e2100031, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33783021

RESUMO

Protein aggregation has been studied for at least 3 decades, and many of the principles that regulate this event are relatively well understood. Here, however, we present a different perspective to explain why proteins aggregate: we argue that aggregation may occur as a side-effect of the lack of one or more natural partners that, under physiologic conditions, would act as chaperones. This would explain why the same surfaces that have evolved for functional purposes are also those that favour aggregation. In the course of reviewing this field, we substantiate our hypothesis with three paradigmatic examples that argue for the generality of our proposal. An obvious corollary of this hypothesis is, of course, that targeting the physiological partners of a protein could be the most direct and specific approach to designing anti-aggregation molecules. Our analysis may thus inform a different strategy for combating diseases of protein aggregation and misfolding.


Assuntos
Chaperonas Moleculares , Agregados Proteicos , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Solubilidade
13.
Bioessays ; 43(2): e2000118, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33284474

RESUMO

Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration-dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post-transcriptional layer of gene regulation. We describe the structural and interaction network properties that characterize the ability of protein and RNA molecules to interact and phase separate in liquid-like compartments. Finally, we show that presence of structurally disordered regions in proteins correlate with the propensity to undergo liquid-to-solid phase transitions and cause human diseases. Also see the video abstract here https://youtu.be/kfpqibsNfS0.


Assuntos
Proteínas Intrinsicamente Desordenadas , DNA , Humanos , Transição de Fase , RNA
14.
Nucleic Acids Res ; 49(W1): W72-W79, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34086933

RESUMO

Prediction of protein-RNA interactions is important to understand post-transcriptional events taking place in the cell. Here we introduce catRAPID omics v2.0, an update of our web server dedicated to the computation of protein-RNA interaction propensities at the transcriptome- and RNA-binding proteome-level in 8 model organisms. The server accepts multiple input protein or RNA sequences and computes their catRAPID interaction scores on updated precompiled libraries. Additionally, it is now possible to predict the interactions between a custom protein set and a custom RNA set. Considerable effort has been put into the generation of a new database of RNA-binding motifs that are searched within the predicted RNA targets of proteins. In this update, the sequence fragmentation scheme of the catRAPID fragment module has been included, which allows the server to handle long linear RNAs and to analyse circular RNAs. For the top-scoring protein-RNA pairs, the web server shows the predicted binding sites in both protein and RNA sequences and reports whether the predicted interactions are conserved in orthologous protein-RNA pairs. The catRAPID omics v2.0 web server is a powerful tool for the characterization and classification of RNA-protein interactions and is freely available at http://service.tartaglialab.com/page/catrapid_omics2_group along with documentation and tutorial.


Assuntos
Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Software , Animais , Sítios de Ligação , Humanos , Camundongos , RNA/química , RNA Circular/química , RNA Circular/metabolismo , Proteínas de Ligação a RNA/química , Ratos , Análise de Sequência de Proteína , Análise de Sequência de RNA
15.
Nucleic Acids Res ; 49(12): 6702-6721, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34133714

RESUMO

RNA-binding proteins (RBPs) are crucial factors of post-transcriptional gene regulation and their modes of action are intensely investigated. At the center of attention are RNA motifs that guide where RBPs bind. However, sequence motifs are often poor predictors of RBP-RNA interactions in vivo. It is hence believed that many RBPs recognize RNAs as complexes, to increase specificity and regulatory possibilities. To probe the potential for complex formation among RBPs, we assembled a library of 978 mammalian RBPs and used rec-Y2H matrix screening to detect direct interactions between RBPs, sampling > 600 K interactions. We discovered 1994 new interactions and demonstrate that interacting RBPs bind RNAs adjacently in vivo. We further find that the mRNA binding region and motif preferences of RBPs deviate, depending on their adjacently binding interaction partners. Finally, we reveal novel RBP interaction networks among major RNA processing steps and show that splicing impairing RBP mutations observed in cancer rewire spliceosomal interaction networks. The dataset we provide will be a valuable resource for understanding the combinatorial interactions of RBPs with RNAs and the resulting regulatory outcomes.


Assuntos
Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Animais , Humanos , Camundongos , Mutação , Neoplasias/genética , Motivos de Nucleotídeos , Ligação Proteica , RNA/química , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
16.
Proc Natl Acad Sci U S A ; 117(2): 1015-1020, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31892536

RESUMO

To function effectively proteins must avoid aberrant aggregation, and hence they are expected to be expressed at concentrations safely below their solubility limits. By analyzing proteome-wide mass spectrometry data of Caenorhabditis elegans, however, we show that the levels of about three-quarters of the nearly 4,000 proteins analyzed in adult animals are close to their intrinsic solubility limits, indeed exceeding them by about 10% on average. We next asked how aging and functional self-assembly influence these solubility limits. We found that despite the fact that the total quantity of proteins within the cellular environment remains approximately constant during aging, protein aggregation sharply increases between days 6 and 12 of adulthood, after the worms have reproduced, as individual proteins lose their stoichiometric balances and the cellular machinery that maintains solubility undergoes functional decline. These findings reveal that these proteins are highly prone to undergoing concentration-dependent phase separation, which on aging is rationalized in a decrease of their effective solubilities, in particular for proteins associated with translation, growth, reproduction, and the chaperone system.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteoma/química , Proteoma/metabolismo , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Homeostase , Espectrometria de Massas , Chaperonas Moleculares/metabolismo , Agregados Proteicos/fisiologia , Dobramento de Proteína , Solubilidade
17.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834591

RESUMO

Deregulation of RNA metabolism has emerged as one of the key events leading to the degeneration of motor neurons (MNs) in Amyotrophic Lateral Sclerosis (ALS) disease. Indeed, mutations on RNA-binding proteins (RBPs) or on proteins involved in aspects of RNA metabolism account for the majority of familiar forms of ALS. In particular, the impact of the ALS-linked mutations of the RBP FUS on many aspects of RNA-related processes has been vastly investigated. FUS plays a pivotal role in splicing regulation and its mutations severely alter the exon composition of transcripts coding for proteins involved in neurogenesis, axon guidance, and synaptic activity. In this study, by using in vitro-derived human MNs, we investigate the effect of the P525L FUS mutation on non-canonical splicing events that leads to the formation of circular RNAs (circRNAs). We observed altered levels of circRNAs in FUSP525L MNs and a preferential binding of the mutant protein to introns flanking downregulated circRNAs and containing inverted Alu repeats. For a subset of circRNAs, FUSP525L also impacts their nuclear/cytoplasmic partitioning, confirming its involvement in different processes of RNA metabolism. Finally, we assess the potential of cytoplasmic circRNAs to act as miRNA sponges, with possible implications in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , MicroRNAs , Humanos , Esclerose Lateral Amiotrófica/metabolismo , RNA Circular/metabolismo , Neurônios Motores/metabolismo , Mutação , MicroRNAs/metabolismo , Proteína FUS de Ligação a RNA/genética
18.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958724

RESUMO

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a large multi-spanning membrane protein that is susceptible to misfolding and aggregation. We have identified here the region responsible for this instability. Temperature-induced aggregation of C-terminally truncated versions of CFTR demonstrated that all truncations up to the second transmembrane domain (TMD2), including the R region, largely resisted aggregation. Limited proteolysis identified a folded structure that was prone to aggregation and consisted of TMD2 and at least part of the Regulatory Region R. Only when both TM7 (TransMembrane helix 7) and TM8 were present, TMD2 fragments became as aggregation-sensitive as wild-type CFTR, in line with increased thermo-instability of late CFTR nascent chains and in silico prediction of aggregation propensity. In accord, isolated TMD2 was degraded faster in cells than isolated TMD1. We conclude that TMD2 extended at its N-terminus with part of the R region forms a protease-resistant structure that induces heat instability in CFTR and may be responsible for its limited intracellular stability.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Temperatura Alta , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Membrana Celular/metabolismo , Proteólise , Temperatura
19.
RNA ; 26(11): 1726-1730, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32669295

RESUMO

MicroRNA expression is important for gene regulation and deregulated microRNA expression is often observed in diseases such as cancer. The processing of primary microRNA transcripts is an important regulatory step in microRNA biogenesis. Due to low expression level and association with chromatin, primary microRNAs are challenging to study in clinical samples where input material is limited. Here, we present a high-sensitivity targeted method to determine processing efficiency of several hundred primary microRNAs from total RNA that requires relatively few RNA sequencing reads. We validate the method using RNA from HeLa cells and show the applicability to clinical samples by analyzing RNA from normal liver and hepatocellular carcinoma. We identify 24 primary microRNAs with significant changes in processing efficiency from normal liver to hepatocellular carcinoma, among those the highly expressed miRNA-122 and miRNA-21, demonstrating that differential processing of primary microRNAs is occurring and could be involved in disease. With our method presented here we provide means to study pri-miRNA processing in disease from clinical samples.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Análise de Sequência de RNA/métodos , Regulação Neoplásica da Expressão Gênica , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
20.
EMBO Rep ; 21(3): e46734, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32017402

RESUMO

The mechanisms that regulate the switch between epidermal progenitor state and differentiation are not fully understood. Recent findings indicate that the chromatin remodelling BAF complex (Brg1-associated factor complex or SWI/SNF complex) and the transcription factor p63 mutually recruit one another to open chromatin during epidermal differentiation. Here, we identify a long non-coding transcript that includes an ultraconserved element, uc.291, which physically interacts with ACTL6A and modulates chromatin remodelling to allow differentiation. Loss of uc.291 expression, both in primary keratinocytes and in three-dimensional skin equivalents, inhibits differentiation as indicated by epidermal differentiation complex genes down-regulation. ChIP experiments reveal that upon uc.291 depletion, ACTL6A is bound to the differentiation gene promoters and inhibits BAF complex targeting to induce terminal differentiation genes. In the presence of uc.291, the ACTL6A inhibitory effect is released, allowing chromatin changes to promote the expression of differentiation genes. Thus, uc.291 interacts with ACTL6A to modulate chromatin remodelling activity, allowing the transcription of late differentiation genes.


Assuntos
Actinas/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , RNA Longo não Codificante , Células Cultivadas , Cromatina/genética , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Humanos , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA