Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38639738

RESUMO

A novel strain, MA3_2.13T, was isolated from deep-sea sediment of Madeira Archipelago, Portugal, and characterized using a polyphasic approach. This strain produced dark brown soluble pigments, bronwish black substrate mycelia and an aerial mycelium with yellowish white spores, when grown on GYM 50SW agar. The main respiratory quinones were MK-10(H4), MK-10(H6) and MK-10(H8). Diphosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids and two glycophospholipids were identified as the main phospholipids. The major cellular fatty acids were iso-C16 : 1, iso-C16 : 0, anteiso-C17 : 1 and anteiso-C17 : 0. Phylogenetic analyses based on 16S rRNA gene showed that strain MA3_2.13T is a member of the genus Streptomyces and was most closely related to Streptomyces triticirhizae NEAU-YY642T (NR_180032.1; 16S rRNA gene similarity 97.9 %), Streptomyces sedi YIM 65188T (NR_044582.1; 16S rRNA gene similarity 97.4 %), Streptomyces mimosae 3MP-10T (NR_170412.1; 16S rRNA gene similarity 97.3 %) and Streptomyces zhaozhouensis NEAU-LZS-5T (NR_133874.1; 16S rRNA gene similarity 97.0 %). Genome pairwise comparisons with closest related type strains retrieved values below the threshold for species delineation suggesting that strain MA3_2.13T represents a new branch within the genus Streptomyces. Based on these results, strain MA3_2.13T (=DSM 115980T=LMG 33094T) is proposed as the type strain of a novel species of the genus Streptomyces, for which the name Streptomyces profundus sp. nov. is proposed.


Assuntos
Ácidos Graxos , Streptomyces , Ácidos Graxos/química , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/genética , Portugal , Microbiologia do Solo , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Fosfolipídeos/química
2.
Mar Drugs ; 22(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38393037

RESUMO

Co-cultivation, coupled with the OSMAC approach, is considered an efficient method for expanding microbial chemical diversity through the activation of cryptic biosynthetic gene clusters (BGCs). As part of our project aiming to discover new fungal metabolites for crop protection, we previously reported five polyketides, the macrolides dendrodolides E (1) and N (2), the azaphilones spiciferinone (3) and 8α-hydroxy-spiciferinone (4), and the bis-naphtho-γ-pyrone cephalochromin (5) from the solid Potato Dextrose Agar (PDA) co-culture of two marine sediment-derived fungi, Plenodomus influorescens and Pyrenochaeta nobilis. However, some of the purified metabolites could not be tested due to their minute quantities. Here we cultivated these fungi (both axenic and co-cultures) in liquid regime using three different media, Potato Dextrose Broth (PDB), Sabouraud Dextrose Broth (SDB), and Czapek-Dox Broth (CDB), with or without shaking. The aim was to determine the most ideal co-cultivation conditions to enhance the titers of the previously isolated compounds and to produce extracts with stronger anti-phytopathogenic activity as a basis for future upscaled fermentation. Comparative metabolomics by UPLC-MS/MS-based molecular networking and manual dereplication was employed for chemical profiling and compound annotations. Liquid co-cultivation in PDB under shaking led to the strongest activity against the phytopathogen Phytophthora infestans. Except for compound 1, all target compounds were detected in the co-culture in PDB. Compounds 2 and 5 were produced in lower titers, whereas the azaphilones (3 and 4) were overexpressed in PDB compared to PDA. Notably, liquid PDB co-cultures contained meroterpenoids and depside clusters that were absent in the solid PDA co-cultures. This study demonstrates the importance of culture regime in BGC regulation and chemical diversity of fungal strains in co-culture studies.


Assuntos
Metaboloma , Espectrometria de Massas em Tandem , Técnicas de Cocultura , Cromatografia Líquida , Meios de Cultura , Glucose
3.
Mar Drugs ; 21(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37999420

RESUMO

The brown algal genus Fucus provides essential ecosystem services crucial for marine environments. Macroalgae (seaweeds) release dissolved organic matter, hence, are under strong settlement pressure from micro- and macrofoulers. Seaweeds are able to control surface epibionts directly by releasing antimicrobial compounds onto their surfaces, and indirectly by recruiting beneficial microorganisms that produce antimicrobial/antifouling metabolites. In the Kiel Fjord, in the German Baltic Sea, three distinct Fucus species coexist: F. vesiculosus, F. serratus, and F. distichus subsp. evanescens. Despite sharing the same habitat, they show varying fouling levels; F. distichus subsp. evanescens is the least fouled, while F. vesiculosus is the most fouled. The present study explored the surface metabolomes and epiphytic microbiota of these three Fucus spp., aiming to uncover the factors that contribute to the differences in the fouling intensity on their surfaces. Towards this aim, algal surface metabolomes were analyzed using comparative untargeted LC-MS/MS-based metabolomics, to identify the marker metabolites influencing surface fouling. Their epiphytic microbial communities were also comparatively characterized using high-throughput amplicon sequencing, to pinpoint the differences in the surface microbiomes of the algae. Our results show that the surface of the least fouling species, F. distichus subsp. evanescens, is enriched with bioactive compounds, such as betaine lipids MGTA, 4-pyridoxic acid, and ulvaline, which are absent from the other species. Additionally, it exhibits a high abundance of the fungal genera Mucor and Alternaria, along with the bacterial genus Yoonia-Loktanella. These taxa are known for producing antimicrobial/antifouling compounds, suggesting their potential role in the observed fouling resistance on the surface of the F. distichus subsp. evanescens compared to F. serratus and F. vesiculosus. These findings provide valuable clues on the differential surface fouling intensity of Fucus spp., and their importance in marine chemical defense and fouling dynamics.


Assuntos
Anti-Infecciosos , Fucus , Alga Marinha , Ecossistema , Fucus/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Alga Marinha/química , Anti-Infecciosos/metabolismo
4.
Mar Drugs ; 21(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36827170

RESUMO

The marine mesopelagic zone extends from water depths of 200 m to 1000 m and is home to a vast number and diversity of species. It is one of the least understood regions of the marine environment with untapped resources of pharmaceutical relevance. The mesopelagic jellyfish Periphylla periphylla is a well-known and widely distributed species in the mesopelagic zone; however, the diversity or the pharmaceutical potential of its cultivable microbiota has not been explored. In this study, we isolated microorganisms associated with the inner and outer umbrella of P. periphylla collected in Irminger Sea by a culture-dependent approach, and profiled their chemical composition and biological activities. Sixteen mostly gram-negative bacterial isolates were selected and subjected to an OSMAC cultivation regime approach using liquid and solid marine broth (MB) and glucose-yeast-malt (GYM) media. Their ethyl acetate (EtOAc) extracts were assessed for cytotoxicity and antimicrobial activity against fish and human pathogens. All, except one extract, displayed diverse levels of antimicrobial activities. Based on low IC50 values, four most bioactive gram-negative strains; Polaribacter sp. SU124, Shewanella sp. SU126, Psychrobacter sp. SU143 and Psychrobacter sp. SU137, were prioritized for an in-depth comparative and untargeted metabolomics analysis using feature-based molecular networking. Various chemical classes such as diketopiperazines, polyhydroxybutyrates (PHBs), bile acids and other lipids were putatively annotated, highlighting the biotechnological potential in P. periphylla-associated microbiota as well as gram-negative bacteria. This is the first study providing an insight into the cultivable bacterial community associated with the mesopelagic jellyfish P. periphylla and, indeed, the first to mine the metabolome and antimicrobial activities of these microorganisms.


Assuntos
Anti-Infecciosos , Microbiota , Cifozoários , Animais , Humanos , Metabolômica , Cifozoários/microbiologia , Bactérias Gram-Negativas , Preparações Farmacêuticas
5.
Mar Drugs ; 21(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827136

RESUMO

Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by a remotely operated vehicle from the seafloor in the Fram Strait, Arctic Ocean (depth of 2454 m). Thirty-two bacteria and six fungal strains that represented the phylogenetic diversity of the isolates were cultured using an One-Strain-Many-Compounds (OSMAC) approach. The crude EtOAc extracts were tested for antimicrobial and anticancer activities. While antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecium was common for many isolates, only two bacteria displayed anticancer activity, and two fungi inhibited the pathogenic yeast Candida albicans. Due to bioactivity against C. albicans and rich chemical diversity based on molecular network-based untargeted metabolomics, Aspergillus versicolor PS108-62 was selected for an in-depth chemical investigation. A chemical work-up of the SPE-fractions of its dichloromethane subextract led to the isolation of a new PKS-NRPS hybrid macrolactone, versicolide A (1), a new quinazoline (-)-isoversicomide A (3), as well as three known compounds, burnettramic acid A (2), cyclopenol (4) and cyclopenin (5). Their structures were elucidated by a combination of HRMS, NMR, [α]D, FT-IR spectroscopy and computational approaches. Due to the low amounts obtained, only compounds 2 and 4 could be tested for bioactivity, with 2 inhibiting the growth of C. albicans (IC50 7.2 µg/mL). These findings highlight, on the one hand, the vast potential of the genus Aspergillus to produce novel chemistry, particularly from underexplored ecological niches such as the Arctic deep sea, and on the other, the importance of untargeted metabolomics for selection of marine extracts for downstream chemical investigations.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Filogenia , Espectroscopia de Infravermelho com Transformada de Fourier , Aspergillus , Fungos/metabolismo , Metaboloma , Antibacterianos/metabolismo , Extratos Vegetais/metabolismo
6.
Mar Drugs ; 21(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37367664

RESUMO

The endothelial cell lining creates an interface between circulating blood and adjoining tissue and forms one of the most critical barriers and targets for therapeutical intervention. Recent studies suggest that fucoidans, sulfated and fucose-rich polysaccharides from brown seaweed, show multiple promising biological effects, including anti-inflammatory properties. However, their biological activity is determined by chemical characteristics such as molecular weight, sulfation degree, and molecular structure, which vary depending on the source, species, and harvesting and isolation method. In this study, we investigated the impact of high molecular weight (HMW) fucoidan extract on endothelial cell activation and interaction with primary monocytes (MNCs) in lipopolysaccharide (LPS)-induced inflammation. Gentle enzyme-assisted extraction combined with fractionation by ion exchange chromatography resulted in well-defined and pure fucoidan fractions. FE_F3, with a molecular weight ranging from 110 to 800 kDa and a sulfate content of 39%, was chosen for further investigation of its anti-inflammatory potential. We observed that along with higher purity of fucoidan fractions, the inflammatory response in endothelial mono- and co-cultures with MNCs was reduced in a dose-dependent manner when testing two different concentrations. This was demonstrated by a decrease in IL-6 and ICAM-1 on gene and protein levels and a reduced gene expression of TLR-4, GSK3ß and NF-kB. Expression of selectins and, consequently, the adhesion of monocytes to the endothelial monolayer was reduced after fucoidan treatment. These data indicate that the anti-inflammatory effect of fucoidans increases with their purity and suggest that fucoidans might be useful in limiting the inflammatory response of endothelial cells in cases of LPS-induced bacterial infection.


Assuntos
Células Endoteliais , Lipopolissacarídeos , Lipopolissacarídeos/farmacologia , Peso Molecular , Polissacarídeos/química , Anti-Inflamatórios , Leucócitos
7.
Mar Drugs ; 21(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37233502

RESUMO

Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Bases de Dados Factuais , Metabolômica/métodos , Biologia Computacional , Genômica
8.
Nurs Ethics ; : 9697330231200571, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735789

RESUMO

BACKGROUND: The COVID-19 pandemic has placed an unprecedented burden on nurses who have been at the forefront of patient care. The continuous exposure to suffering, death, and overwhelming demands has the potential to lead to compassion fatigue, a state of emotional, physical, and cognitive exhaustion. RESEARCH AIM: The study aimed to explore and understand the phenomenon of compassion fatigue in nurses as the effect of the COVID-19 pandemic. RESEARCH DESIGN: A constructivist grounded theory design was used. PARTICIPANTS AND RESEARCH CONTEXT: The research data were collected from 20 nurses who had been employed in pandemic clinics in Turkey for a minimum of 6 months. Data were collected using a two-step approach: purposeful sample selection followed by theoretical sample selection. Individual interviews were conducted via an online platform with participants who consented to participate in the study from January 16th to April 28th, 2022. The collected data underwent initial, focused, and theoretical coding for analysis. The research findings were reported following the Consolidated Criteria for Reporting Qualitative Research guidelines. ETHICAL CONSIDERATIONS: Ethical approval for the study was received from Non-Interventional Clinical Research Ethics Committee. The study was conducted following the Declaration of Helsinki. FINDINGS: The study identified a core category, namely the desire to provide the best care, which was accompanied by five main categories: causes, symptoms, consequences, coping methods, and the benefits of coping methods. CONCLUSION: During the pandemic process, nurses have experienced compassion fatigue due to various factors and have seen its symptoms. Nurses have developed various coping mechanisms individually. However, they have not indicated any institutional-level support. It has become necessary to plan nurse-centered comprehensive interventions that will reduce compassion fatigue.

9.
Appl Environ Microbiol ; 88(6): e0229621, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35108092

RESUMO

The genome of the wheat-pathogenic fungus Zymoseptoria tritici represents extensive presence-absence variation in gene content. Here, we addressed variation in biosynthetic gene cluster (BGC) content and biochemical profiles among three isolates. We analyzed secondary metabolite properties based on genome, transcriptome, and metabolome data. The isolates represent highly distinct genome architecture but harbor similar repertoires of BGCs. Expression profiles for most BGCs show comparable patterns of regulation among the isolates, suggesting a conserved biochemical infection program. For all three isolates, we observed a strong upregulation of a putative abscisic acid (ABA) gene cluster during biotrophic host colonization, indicating that Z. tritici interferes with host defenses by the biosynthesis of this phytohormone. Further, during in vitro growth, the isolates show similar metabolomes congruent with the predicted BGC content. We assessed if secondary metabolite production is regulated by histone methylation using a mutant impaired in formation of facultative heterochromatin (H3K27me3). In contrast to other ascomycete fungi, chromatin modifications play a less prominent role in regulation of secondary metabolites. In summary, we show that Z. tritici has a conserved program of secondary metabolite production, contrasting with the immense variation in effector expression, and some of these metabolites might play a key role during host colonization. IMPORTANCE Zymoseptoria tritici is one of the most devastating pathogens of wheat. So far the molecular determinants of virulence and their regulation are poorly understood. Previous studies have focused on proteinaceous virulence factors and their extensive diversity. In this study, we focus on secondary metabolites produced by Z. tritici. Using a comparative framework, we characterize core and noncore metabolites produced by Z. tritici by combining genome, transcriptome, and metabolome data sets. Our findings indicate highly conserved biochemical profiles with contrasting genetic and phenotypic diversity of the field isolates investigated here. This discovery has relevance for future crop protection strategies.


Assuntos
Ascomicetos , Doenças das Plantas , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Transcriptoma , Virulência/genética
10.
J Nat Prod ; 85(7): 1704-1714, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35793792

RESUMO

Certain cyanobacteria of the secondary metabolite-rich order Nostocales can establish permanent symbioses with a large number of cycads, by accumulating in their coralloid roots and shifting their metabolism to dinitrogen fixation. Here, we report the discovery of two new lipoglycopeptides, desmamides A (1) and B (2), together with their aglycone desmamide C (3), from the nostocalean cyanobacterium Desmonostoc muscorum LEGE 12446 isolated from a cycad (Cycas revoluta) coralloid root. The chemical structures of the compounds were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The desmamides are decapeptides featuring O-glycosylation of tyrosine (in 1 and 2) and an unusual 3,5-dihydroxy-2-methyldecanoic acid residue. The biosynthesis of the desmamides was studied by substrate incubation experiments and bioinformatics. We describe herein the dsm biosynthetic gene cluster and propose it to be associated with desmamide production. The discovery of this class of very abundant (>1.5% d.w.) bacterial lipoglycopeptides paves the way for exploration of their potential role in root endosymbiosis.


Assuntos
Cianobactérias , Cycas , Cianobactérias/metabolismo , Cycas/microbiologia , Lipoglicopeptídeos/metabolismo , Raízes de Plantas/microbiologia , Simbiose
11.
J Nat Prod ; 85(4): 927-935, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35271771

RESUMO

Vatairea guianenis Aubl. (Fabaceae) is an Amazonian medicinal plant species traditionally used for treating skin diseases. In an initial screening, a V. guianensis leaf extract and its subextracts showed antibacterial and antifungal activities. The EtOAc subextract was selected for chemical workup and afforded five known (1-4 and 8) and six undescribed isoflavones, vatairenones C-H (5-7 and 9-11). All isoflavones are prenylated in position C-8, displaying either chain-prenylated (1-7) or ring-closed forms (8-11). The most bioactive compound (3) exhibited in vitro activity against clinically relevant bacteria and fungi with IC50 values ranging from 6.8 to 26.9 µM. Due to its broad antimicrobial activity and low general toxicity, compound 3 is a potential lead compound for structural modifications. The results of the present study support the ethnomedicinal use of V. guianensis in the treatment of dermatological disorders. 1H NMR spectra of some of the isolated compounds showed intricate signal patterns, which might explain repeated errors in assigning the correct structure of the isoflavonoid B-ring in the literature and which we resolved by higher order spectra simulations.


Assuntos
Anti-Infecciosos , Fabaceae , Isoflavonas , Plantas Medicinais , Antibacterianos/farmacologia , Fabaceae/química , Isoflavonas/química , Isoflavonas/farmacologia , Extratos Vegetais , Folhas de Planta
12.
Mar Drugs ; 20(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36135762

RESUMO

Similar to other marine holobionts, fish are colonized by complex microbial communities that promote their health and growth. Fish-associated microbiota is emerging as a promising source of bioactive metabolites. Pleuronectes platessa (European plaice, plaice), a flatfish with commercial importance, is common in the Baltic Sea. Here we used a culture-dependent survey followed by molecular identification to identify microbiota associated with the gills and the gastrointestinal tract (GIT) of P. platessa, then profiled their antimicrobial activity and metabolome. Altogether, 66 strains (59 bacteria and 7 fungi) were isolated, with Proteobacteria being the most abundant phylum. Gill-associated microbiota accounted for higher number of isolates and was dominated by the Proteobacteria (family Moraxellaceae) and Actinobacteria (family Nocardiaceae), whereas Gram-negative bacterial families Vibrionaceae and Shewanellaceae represented the largest group associated with the GIT. The EtOAc extracts of the solid and liquid media cultures of 21 bacteria and 2 fungi representing the diversity of cultivable plaice-associated microbiota was profiled for their antimicrobial activity against three fish pathogens, human bacterial pathogen panel (ESKAPE) and two human fungal pathogens. More than half of all tested microorganisms, particularly those originating from the GIT epithelium, exhibited antagonistic effect against fish pathogens (Lactococcus garvieae, Vibrio ichthyoenteri) and/or human pathogens (Enterococcus faecium, methicillin-resistant Staphylococcus aureus). Proteobacteria represented the most active isolates. Notably, the solid media extracts displayed higher activity against fish pathogens, while liquid culture extracts were more active against human pathogens. Untargeted metabolomics approach using feature-based molecular networking showed the high chemical diversity of the liquid extracts that contained undescribed clusters. This study highlights plaice-associated microbiota as a potential source of antimicrobials for the control of human and the aquaculture-associated infections. This is the first study reporting diversity, bioactivity and chemical profile of culture-dependent microbiota of plaice.


Assuntos
Linguado , Staphylococcus aureus Resistente à Meticilina , Microbiota , Animais , Aquicultura , Peixes , Brânquias , Humanos , Metaboloma
13.
Mar Drugs ; 20(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35323509

RESUMO

Seaweed endophytic (algicolous) fungi are talented producers of bioactive natural products. We have previously isolated two strains of the endophytic fungus, Pyrenochaetopsis sp. FVE-001 and FVE-087, from the thalli of the brown alga Fucus vesiculosus. Initial chemical studies yielded four new decalinoylspirotetramic acid derivatives with antimelanoma activity, namely pyrenosetins A-C (1-3) from Pyrenochaetopsis sp. strain FVE-001, and pyrenosetin D (4) from strain FVE-087. In this study, we applied a comparative metabolomics study employing HRMS/MS based feature-based molecular networking (FB MN) on both Pyrenochaetopsis strains. A higher chemical capacity in production of decalin derivatives was observed in Pyrenochaetopsis sp. FVE-087. Notably, several decalins showed different retention times despite the same MS data and MS/MS fragmentation pattern with the previously isolated pyrenosetins, indicating they may be their stereoisomers. FB MN-based targeted isolation studies coupled with antimelanoma activity testing on the strain FVE-087 afforded two new stereoisomers, pyrenosetins E (5) and F (6). Extensive NMR spectroscopy including DFT computational studies, HR-ESIMS, and Mosher's ester method were used in the structure elucidation of compounds 5 and 6. The 3'R,5'R stereochemistry determined for compound 6 was identical to that previously reported for pyrenosetin C (3), whose stereochemistry was revised as 3'S,5'R in this study. Pyrenosetin E (5) inhibited the growth of human malignant melanoma cells (A-375) with an IC50 value of 40.9 µM, while 6 was inactive. This study points out significant variations in the chemical repertoire of two closely related fungal strains and the versatility of FB MN in identification and targeted isolation of stereoisomers. It also confirms that the little-known fungal genus Pyrenochaetopsis is a prolific source of complex decalinoylspirotetramic acid derivatives.


Assuntos
Ascomicetos/metabolismo , Misturas Complexas/química , Endófitos/metabolismo , Fucus/microbiologia , Alga Marinha/microbiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Misturas Complexas/farmacologia , Humanos , Metabolômica , Estereoisomerismo
14.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054969

RESUMO

Microbial co-cultivation is a promising approach for the activation of biosynthetic gene clusters (BGCs) that remain transcriptionally silent under artificial culture conditions. As part of our project aiming at the discovery of marine-derived fungal agrochemicals, we previously used four phytopathogens as model competitors in the co-cultivation of 21 marine fungal strains. Based on comparative untargeted metabolomics analyses and anti-phytopathogenic activities of the co-cultures, we selected the co-culture of marine Cosmospora sp. with the phytopathogen Magnaporthe oryzae for in-depth chemical studies. UPLC-MS/MS-based molecular networking (MN) of the co-culture extract revealed an enhanced diversity of compounds in several molecular families, including isochromanones, specifically induced in the co-culture. Large scale co-cultivation of Cosmospora sp. and M. oryzae resulted in the isolation of five isochromanones from the whole co-culture extract, namely the known soudanones A, E, D (1-3) and their two new derivatives, soudanones H-I (4-5), the known isochromans, pseudoanguillosporins A and B (6, 7), naphtho-γ-pyrones, cephalochromin and ustilaginoidin G (8, 9), and ergosterol (10). Their structures were established by NMR, HR-ESIMS, FT-IR, electronic circular dichroism (ECD) spectroscopy, polarimetry ([α]D), and Mosher's ester reaction. Bioactivity assays revealed antimicrobial activity of compounds 2 and 3 against the phytopathogens M. oryzae and Phytophthora infestans, while pseudoanguillosporin A (6) showed the broadest and strongest anti-phytopathogenic activity against Pseudomonas syringae, Xanthomonas campestris, M. oryzae and P. infestans. This is the first study assessing the anti-phytopathogenic activities of soudanones.


Assuntos
Ascomicetos/metabolismo , Cromonas/química , Cromonas/metabolismo , Interações Microbianas , Ascomicetos/genética , Cromatografia Líquida , Cromonas/isolamento & purificação , Técnicas de Cocultura , Metaboloma , Metabolômica/métodos , Estrutura Molecular , Análise Espectral , Espectrometria de Massas em Tandem
15.
Nat Prod Rep ; 38(7): 1235-1242, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34287433

RESUMO

The tremendous diversity of life in the ocean has proven to be a rich source of inspiration for drug discovery, with success rates for marine natural products up to 4 times higher than other naturally derived compounds. Yet the marine biodiscovery pipeline is characterized by chronic underfunding, bottlenecks and, ultimately, untapped potential. For instance, a lack of taxonomic capacity means that, on average, 20 years pass between the discovery of new organisms and the formal publication of scientific names, a prerequisite to proceed with detecting and isolating promising bioactive metabolites. The need for "edge" research that can spur novel lines of discovery and lengthy high-risk drug discovery processes, are poorly matched with research grant cycles. Here we propose five concrete pathways to broaden the biodiscovery pipeline and open the social and economic potential of the ocean genome for global benefit: (1) investing in fundamental research, even when the links to industry are not immediately apparent; (2) cultivating equitable collaborations between academia and industry that share both risks and benefits for these foundational research stages; (3) providing new opportunities for early-career researchers and under-represented groups to engage in high-risk research without risking their careers; (4) sharing data with global networks; and (5) protecting genetic diversity at its source through strong conservation efforts. The treasures of the ocean have provided fundamental breakthroughs in human health and still remain under-utilised for human benefit, yet that potential may be lost if we allow the biodiscovery pipeline to become blocked in a search for quick-fix solutions.


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/isolamento & purificação , Descoberta de Drogas , Biodiversidade
16.
Mar Drugs ; 19(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435402

RESUMO

Marine sponges are exceptionally prolific sources of natural products for the discovery and development of new drugs. Until now, sponges have contributed around 30% of all natural metabolites isolated from the marine environment. Family Latrunculiidae Topsent, 1922 (class Demospongiae Sollas, 1885, order Poecilosclerida Topsent, 1928) is a small sponge family comprising seven genera. Latrunculid sponges are recognized as the major reservoirs of diverse types of pyrroloiminoquinone-type alkaloids, with a myriad of biological activities, in particular, cytotoxicity, fuelling their exploration for anticancer drug discovery. Almost 100 pyrroloiminoquinone alkaloids and their structurally related compounds have been reported from the family Latrunculiidae. The systematics of latrunculid sponges has had a complex history, however it is now well understood. The pyrroloiminoquinone alkaloids have provided important chemotaxonomic characters for this sponge family. Latrunculid sponges have been reported to contain other types of metabolites, such as peptides (callipeltins), norditerpenes and norsesterpenes (trunculins) and macrolides (latrunculins), however, the sponges containing latrunculins and trunculins have been transferred to other sponge families. This review highlights a comprehensive literature survey spanning from the first chemical investigation of a New Zealand Latrunculia sp. in 1986 until August 2020, focusing on the chemical diversity and biological activities of secondary metabolites reported from the family Latrunculiidae. The biosynthetic (microbial) origin and the taxonomic significance of pyrroloiminoquinone related alkaloids are also discussed.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Poríferos/química , Poríferos/classificação , Animais , Descoberta de Drogas , Humanos , Estrutura Molecular , Poríferos/metabolismo
17.
Mar Drugs ; 19(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477773

RESUMO

Brown alga Bifurcaria bifurcata is an extraordinarily rich source of linear (acylic) diterpenes with enormous structural diversity. As part of our interest into secondary metabolites of the Irish seaweeds, here we report four new acyclic diterpenes (1-4) and seven known terpenoids (5-11) from the CHCl3 extract of B. bifurcata. The planar structures of the new metabolites were elucidated by means of 1D and 2D NMR, HRMS, and FT-IR spectroscopy. Since linear diterpenes are highly flexible compounds, the assignment of their stereochemistry by conventional methods, e.g., NOESY NMR, is difficult. Therefore, we employed extensive quantum-mechanical prediction of NMR chemical shifts and optical rotation analyses to identify the relative and absolute configurations of the new compounds 1-4. Several compounds moderately inhibited the human breast cancer cell line (MDA-MB-231) with IC50 values ranging from 10.0 to 33.5 µg/mL. This study not only demonstrates the vast capacity of the Irish B. bifurcata to produce highly oxygenated linear diterpenoids, but also highlights the potential of new methodologies for assignment of their stereogenic centers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Diterpenos/isolamento & purificação , Phaeophyceae/metabolismo , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Diterpenos/química , Diterpenos/farmacologia , Feminino , Humanos , Concentração Inibidora 50 , Irlanda , Metabolismo Secundário , Terpenos/química , Terpenos/isolamento & purificação
18.
Mar Drugs ; 19(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34436278

RESUMO

The Persian Gulf is a unique and biologically diverse marine environment dominated by invertebrates. In continuation of our research interest in the chemistry and biological activity of marine sponges from the Persian Gulf, we selected the excavating sponge Cliona celata for detailed metabolome analyses, in vitro bioactivity screening, and chemical isolation studies. A UPLC-MS/MS (MS2) molecular-networking-based dereplication strategy allowed annotation and structural prediction of various diketopiperazines (DKPs) and etzionin-type diketopiperazine hydroxamates (DKPHs) in the crude sponge extract. The molecular-networking-guided isolation approach applied to the crude extract afforded the DKPH etzionin (1) and its two new derivatives, clioetzionin A (2) and clioetzionin B (3). Another new modified DKP (4) was identified by MS/MS analyses but could not be isolated in sufficient quantities to confirm its structure. The chemical characterization of the purified DKPHs 1-3 was performed by a combination of 1D and 2D NMR spectroscopy, HRMS, HRMS/MS, and [α]D analyses. Compounds 1 and 2 exhibited broad antibacterial, antifungal, and anticancer activities, with IC50 values ranging from 19.6 to 159.1 µM. This is the first study investigating the chemical constituents of a C. celata specimen from the Persian Gulf. It is also the first report of full spectroscopic data of etzionin based on extensive spectroscopic analyses.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Dicetopiperazinas/química , Poríferos , Animais , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Organismos Aquáticos , Dicetopiperazinas/farmacologia , Células HCT116/efeitos dos fármacos , Humanos , Oceano Índico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Estrutura Molecular , Farmacologia em Rede , Fitoterapia , Espectrometria de Massas em Tandem
19.
Mar Drugs ; 20(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35049876

RESUMO

The Estremadura Spur pockmarks are a unique and unexplored ecosystem located in the North Atlantic, off the coast of Portugal. A total of 85 marine-derived actinomycetes were isolated and cultured from sediments collected from this ecosystem at a depth of 200 to 350 m. Nine genera, Streptomyces, Micromonospora, Saccharopolyspora, Actinomadura, Actinopolymorpha, Nocardiopsis, Saccharomonospora, Stackebrandtia, and Verrucosispora were identified by 16S rRNA gene sequencing analyses, from which the first two were the most predominant. Non-targeted LC-MS/MS, in combination with molecular networking, revealed high metabolite diversity, including several known metabolites, such as surugamide, antimycin, etamycin, physostigmine, desferrioxamine, ikarugamycin, piericidine, and rakicidin derivatives, as well as numerous unidentified metabolites. Taxonomy was the strongest parameter influencing the metabolite production, highlighting the different biosynthetic potentials of phylogenetically related actinomycetes; the majority of the chemical classes can be used as chemotaxonomic markers, as the metabolite distribution was mostly genera-specific. The EtOAc extracts of the actinomycete isolates demonstrated antimicrobial and antioxidant activity. Altogether, this study demonstrates that the Estremadura Spur is a source of actinomycetes with potential applications for biotechnology. It highlights the importance of investigating actinomycetes from unique ecosystems, such as pockmarks, as the metabolite production reflects their adaptation to this habitat.


Assuntos
Actinobacteria/metabolismo , Antibacterianos/farmacologia , Actinobacteria/genética , Animais , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Organismos Aquáticos , Produtos Biológicos , Linhagem Celular Tumoral/efeitos dos fármacos , Ecossistema , Células HaCaT/efeitos dos fármacos , Humanos , Metabolômica , Filogenia , Portugal
20.
J Relig Health ; 60(6): 4387-4401, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34417951

RESUMO

This descriptive study was performed to determine the knowledge and attitudes of 492 Faculty of Theology students in Turkey regarding organ donation and the determinants of organ donation intention according to the theory of planned behavior. The study used the Attitudes Toward Organ Donation Scale and the Organ-Tissue Donation and Transplantation Knowledge Scale. According to the results of the regression analysis, the factors affecting organ donation intention were attitude (OR 1.19, 95%CI 1.11-1.27), subjective norms (OR 1.10, 95%CI 1.01-1.20), and perceived behavioral control (OR 1.30, 95%CI 1.18-1.44). In this study, behavioral intention was significantly associated with attitude, subjective norms, and perceived behavioral control.


Assuntos
Teologia , Obtenção de Tecidos e Órgãos , Morte Encefálica , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Estudantes , Inquéritos e Questionários , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA