Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO J ; 37(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29844016

RESUMO

The Arp2/3 complex generates branched actin networks that exert pushing forces onto different cellular membranes. WASH complexes activate Arp2/3 complexes at the surface of endosomes and thereby fission transport intermediates containing endocytosed receptors, such as α5ß1 integrins. How WASH complexes are assembled in the cell is unknown. Here, we identify the small coiled-coil protein HSBP1 as a factor that specifically promotes the assembly of a ternary complex composed of CCDC53, WASH, and FAM21 by dissociating the CCDC53 homotrimeric precursor. HSBP1 operates at the centrosome, which concentrates the building blocks. HSBP1 depletion in human cancer cell lines and in Dictyostelium amoebae phenocopies WASH depletion, suggesting a critical role of the ternary WASH complex for WASH functions. HSBP1 is required for the development of focal adhesions and of cell polarity. These defects impair the migration and invasion of tumor cells. Overexpression of HSBP1 in breast tumors is associated with increased levels of WASH complexes and with poor prognosis for patients.


Assuntos
Centrossomo/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Modelos Moleculares , Prognóstico
2.
J Cell Sci ; 132(21)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31604795

RESUMO

Directional collective cell migration (DCCM) is crucial for morphogenesis and cancer metastasis. P-cadherin (also known as CDH3), which is a cell-cell adhesion protein expressed in carcinoma and aggressive sarcoma cells and associated with poor prognosis, is a major DCCM regulator. However, it is unclear how P-cadherin-mediated mechanical coupling between migrating cells influences force transmission to the extracellular matrix (ECM). Here, we found that decorin, a small proteoglycan that binds to and organizes collagen fibers, is specifically expressed and secreted upon P-cadherin, but not E- and R-cadherin (also known as CDH1 and CDH4, respectively) expression. Through cell biological and biophysical approaches, we demonstrated that decorin is required for P-cadherin-mediated DCCM and collagen fiber orientation in the migration direction in 2D and 3D matrices. Moreover, P-cadherin, through decorin-mediated collagen fiber reorientation, promotes the activation of ß1 integrin and of the ß-Pix (ARHGEF7)/CDC42 axis, which increases traction forces, allowing DCCM. Our results identify a novel P-cadherin-mediated mechanism to promote DCCM through ECM remodeling and ECM-guided cell migration.


Assuntos
Caderinas/metabolismo , Movimento Celular/fisiologia , Colágeno/metabolismo , Decorina/metabolismo , Adesão Celular/fisiologia , Matriz Extracelular/metabolismo , Humanos , Fenômenos Mecânicos , Proteína cdc42 de Ligação ao GTP/metabolismo
3.
J Cell Sci ; 131(17)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30111578

RESUMO

Tumor cell invasion and metastasis formation are the major cause of death in cancer patients. These processes rely on extracellular matrix (ECM) degradation mediated by organelles termed invadopodia, to which the transmembrane matrix metalloproteinase MT1-MMP (also known as MMP14) is delivered from its reservoir, the RAB7-containing endolysosomes. How MT1-MMP is targeted to endolysosomes remains to be elucidated. Flotillin-1 and -2 are upregulated in many invasive cancers. Here, we show that flotillin upregulation triggers a general mechanism, common to carcinoma and sarcoma, which promotes RAB5-dependent MT1-MMP endocytosis and its delivery to RAB7-positive endolysosomal reservoirs. Conversely, flotillin knockdown in invasive cancer cells greatly reduces MT1-MMP accumulation in endolysosomes, its subsequent exocytosis at invadopodia, ECM degradation and cell invasion. Our results demonstrate that flotillin upregulation is necessary and sufficient to promote epithelial and mesenchymal cancer cell invasion and ECM degradation by controlling MT1-MMP endocytosis and delivery to the endolysosomal recycling compartment.


Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Endocitose , Endossomos/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Lisossomos/genética , Metaloproteinase 14 da Matriz/genética , Proteínas de Membrana/genética , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/patologia , Podossomos/genética , Podossomos/metabolismo , Transporte Proteico , Regulação para Cima , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
4.
Lung Cancer ; 135: 21-28, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31446997

RESUMO

Squamous cell carcinoma (SCC), one of the most common forms of lung cancer, shows accelerated progression and aggressive growth and usually is observed at advanced stages. SCC originates from morphological changes in the bronchial epithelium that occur during chronic inflammation: basal cell hyperplasia, squamous metaplasia, and dysplasia I-III. However, the process is not inevitable; it can be stopped at any stage, remain in the stable state indefinitely and either progress or regress. The reasons and mechanisms of different scenarios of the evolution of premalignant lesions in the respiratory epithelium are not fully understood. In this review, we summarized the literature data (including our own data) regarding genetic, epigenetic, transcriptomic and proteomic profiles of the premalignant lesions and highlighted factors (environmental causes, inflammation, and gene polymorphism) that may govern their progression or regression. In conclusion, we reviewed strategies for lung cancer prevention and proposed new models and research directions for studying premalignant lesions and developing new tools to predict the risk of their malignant transformation.


Assuntos
Carcinoma de Células Escamosas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Lesões Pré-Cancerosas/patologia , Animais , Carcinoma de Células Escamosas/etiologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Epigênese Genética , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/etiologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Fatores de Risco
5.
Cell Res ; 29(6): 432-445, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30971746

RESUMO

The actin cytoskeleton generates and senses forces. Here we report that branched actin networks from the cell cortex depend on ARPC1B-containing Arp2/3 complexes and that they are specifically monitored by type I coronins to control cell cycle progression in mammary epithelial cells. Cortical ARPC1B-dependent branched actin networks are regulated by the RAC1/WAVE/ARPIN pathway and drive lamellipodial protrusions. Accordingly, we uncover that the duration of the G1 phase scales with migration persistence in single migrating cells. Moreover, cortical branched actin more generally determines S-phase entry by integrating soluble stimuli such as growth factors and mechanotransduction signals, ensuing from substratum rigidity or stretching of epithelial monolayers. Many tumour cells lose this dependence for cortical branched actin. But the RAC1-transformed tumour cells stop cycling upon Arp2/3 inhibition. Among all genes encoding Arp2/3 subunits, ARPC1B overexpression in tumours is associated with the poorest metastasis-free survival in breast cancer patients. Arp2/3 specificity may thus provide diagnostic and therapeutic opportunities in cancer.


Assuntos
Actinas/metabolismo , Neoplasias da Mama/genética , Ciclo Celular , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Quimioterapia Adjuvante , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , RNA Mensageiro/genética
6.
Immunobiology ; 222(4): 631-640, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27916281

RESUMO

Recent studies have highlighted the heterogeneity of the tumor microenvironment (ME) and the importance of its analysis to the understanding of its impact on clinical outcomes. In this study, we aimed to analyze the intratumoral distribution of macrophages and fibroblasts in breast cancer (BC) based on the morphological diversity of tumor cells (tubular, alveolar, solid, trabecular and discrete structures) and the clinicopathological parameters of the disease. Thirty-six patients with invasive breast carcinoma of no special type were included in the study. The distribution of macrophages and fibroblasts in the MEs of different morphological structures was assessed using laser microdissection-assisted quantitative RT-PCR analysis of marker genes and double immunofluorescence staining for the CD68, RS1, aSMA, and FAP proteins. Gene expression microarrays were used to determine the expression of genes involved in the regulation of macrophage and fibroblast phenotypes in different morphological structures. We found that different macrophage and fibroblast subpopulations were simultaneously observed in the MEs of morphologically distinct structures but that the frequency of their detection and number of cells detected varied significantly among these structures. In particular, macrophages and fibroblasts were more frequently detected in the ME of solid structures and were rarely observed in tubular structures. A high number of CD68+RS1+ macrophages in the ME of solid structures was found to be associated with an increased frequency of lymph node metastasis in luminal B HER2- BC. In contrast, in luminal B HER2+ BC, lymph node involvement was related to the high representation of aSMA+FAP+ fibroblasts around trabecular structures. Morphologically distinct structures differed in the mechanisms regulating the macrophage and fibroblast phenotypes. The highest number of overexpressed genes controlling macrophage and fibroblast functions was observed in discrete groups of tumor cells, and the lowest number was observed in alveolar and solid structures. Taken together, our findings indicate the heterogeneous distribution of macrophages and fibroblasts in breast tumors and its close relation to the intratumoral morphological diversity of BC and contribution to lymph node metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Macrófagos/metabolismo , Adulto , Idoso , Biomarcadores , Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Fibroblastos Associados a Câncer/patologia , Comunicação Celular , Contagem de Células , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunofenotipagem , Metástase Linfática , Macrófagos/imunologia , Macrófagos/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
7.
Oncotarget ; 8(37): 61163-61180, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28977854

RESUMO

Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44+CD24- cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44+CD24- cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44+CD24- stemness and the appeal of this heterogeneity as a model for the study of cancer invasion.

8.
Biores Open Access ; 2(2): 148-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23593567

RESUMO

Invasive ductal carcinoma (IDC) not otherwise specified (NOS), the most common type of breast cancer, demonstrates great intratumoral morphological heterogeneity, which encompasses the presence of different types of morphological structures-tubular, trabecular, solid, and alveolar structures and discrete groups of tumor cells, the origins of which remain unclear at present. In this study of 162 IDC NOS patients, we investigated whether the distribution of different types of morphological structures is related to the basic clinicopathological parameters of IDC NOS. Our results showed that in patients with only one type of tumor structure, the presence of any one of the five types was equally probable; however, cases with two types of structures were more likely to contain trabecular structures than the other four types. The development of intratumoral morphological heterogeneity was not associated with menopausal status, tumor size, histological grade, hematogenic metastasis, or recurrence. However, the number of different types of morphological structures was significantly higher in luminal tumors than in triple-negative tumors. An increase in the frequency of lymph node metastasis correlated with the increased number of different types of structures in breast tumors; however, in contrast to premenopausal patients, this association was explained by the presence of alveolar structures in postmenopausal women. In addition, we showed a significant decrease in the numbers of positive lymph nodes in tumors with high numbers of morphological variants. The frequency of lymph node metastases and the number of positive nodes were generally independent features and formed by different mechanisms. Based on the evidence, the term "phenotypic drift" has been designated as the basis for the development of intratumoral morphological heterogeneity of IDC NOS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA