Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 589(7843): 608-614, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408413

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS or progeria) is typically caused by a dominant-negative C•G-to-T•A mutation (c.1824 C>T; p.G608G) in LMNA, the gene that encodes nuclear lamin A. This mutation causes RNA mis-splicing that produces progerin, a toxic protein that induces rapid ageing and shortens the lifespan of children with progeria to approximately 14 years1-4. Adenine base editors (ABEs) convert targeted A•T base pairs to G•C base pairs with minimal by-products and without requiring double-strand DNA breaks or donor DNA templates5,6. Here we describe the use of an ABE to directly correct the pathogenic HGPS mutation in cultured fibroblasts derived from children with progeria and in a mouse model of HGPS. Lentiviral delivery of the ABE to fibroblasts from children with HGPS resulted in 87-91% correction of the pathogenic allele, mitigation of RNA mis-splicing, reduced levels of progerin and correction of nuclear abnormalities. Unbiased off-target DNA and RNA editing analysis did not detect off-target editing in treated patient-derived fibroblasts. In transgenic mice that are homozygous for the human LMNA c.1824 C>T allele, a single retro-orbital injection of adeno-associated virus 9 (AAV9) encoding the ABE resulted in substantial, durable correction of the pathogenic mutation (around 20-60% across various organs six months after injection), restoration of normal RNA splicing and reduction of progerin protein levels. In vivo base editing rescued the vascular pathology of the mice, preserving vascular smooth muscle cell counts and preventing adventitial fibrosis. A single injection of ABE-expressing AAV9 at postnatal day 14 improved vitality and greatly extended the median lifespan of the mice from 215 to 510 days. These findings demonstrate the potential of in vivo base editing as a possible treatment for HGPS and other genetic diseases by directly correcting their root cause.


Assuntos
Adenina/metabolismo , Edição de Genes/métodos , Mutação , Progéria/genética , Progéria/terapia , Alelos , Processamento Alternativo , Animais , Aorta/patologia , Pareamento de Bases , Criança , DNA/genética , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/química , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Longevidade , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Progéria/patologia , RNA/genética
2.
Nat Methods ; 15(2): 127-133, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29256494

RESUMO

The high-throughput detection of organelle composition and proteomic mapping of protein environment directly from primary tissue as well as the identification of interactors of insoluble proteins that form higher-order structures have remained challenges in biological research. We report a proximity-based labeling approach that uses an antibody to a target antigen to guide biotin deposition onto adjacent proteins in fixed cells and primary tissues, which allows proteins in close proximity to the target antigen to be captured and identified by mass spectrometry. We demonstrated the specificity and sensitivity of our method by examining the well-studied mitochondrial matrix. We then used the method to profile the dynamic interactome of lamin A/C in multiple cell and tissue types under various treatment conditions. The ability to detect proximal proteins and putative interactors in intact tissues, and to quantify changes caused by different conditions or in the presence of disease mutations, can provide a window into cell biology and disease pathogenesis.


Assuntos
Anticorpos/metabolismo , Biotina/metabolismo , Biotinilação/métodos , Marcação por Isótopo/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Proteômica/métodos , Animais , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL
4.
Aging Cell ; : e14375, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422121

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder in children caused by a point mutation in the lamin A gene, resulting in a toxic form of lamin A called progerin. Accelerated atherosclerosis leading to heart attack and stroke are the major causes of death in these patients. Endothelial cell (EC) dysfunction contributes to the pathogenesis of HGPS related cardiovascular diseases (CVD). Endothelial cell-cell communications are important in the development of the vasculature, and their disruptions contribute to cardiovascular pathology. However, it is unclear how progerin interferes with such communications that lead to vascular dysfunction. An antibody array screening of healthy and HGPS patient EC secretomes identified Angiopoietin-2 (Ang2) as a down-regulated signaling molecule in HGPS ECs. A similar down-regulation of Ang2 mRNA and protein was detected in the aortas from an HGPS mouse model. Addition of Ang2 to HGPS ECs rescues vasculogenesis, normalizes endothelial cell migration and gene expression, and restores nitric oxide bioavailability through eNOS activation. Furthermore, Ang2 addition reverses unfavorable paracrine effects of HGPS ECs on vascular smooth muscle cells. Lastly, by utilizing adenine base editor (ABE)-corrected HGPS ECs and progerin-expressing HUVECs, we demonstrated a negative correlation between progerin and Ang2 expression. Lastly, our results indicated that Ang2 exerts its beneficial effect in ECs through Tie2 receptor binding, activating an Akt-mediated pathway. Together, these results provide molecular insights into EC dysfunction in HGPS and suggest that Ang2 treatment has potential therapeutic effects in HGPS-related CVD.

5.
Aging Cell ; 22(9): e13903, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365004

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder affecting tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C > T (p.G608G) mutation in the gene encoding lamin A (LMNA), which activates a cryptic splice donor site resulting in production of the toxic "progerin" protein. Clinical manifestations include growth deficiency, lipodystrophy, sclerotic dermis, cardiovascular defects, and bone dysplasia. Here we utilized the LmnaG609G knock-in (KI) mouse model of HGPS to further define mechanisms of bone loss associated with normal and premature aging disorders. Newborn skeletal staining of KI mice revealed altered rib cage shape and spinal curvature, and delayed calvarial mineralization with increased craniofacial and mandibular cartilage content. MicroCT analysis and mechanical testing of adult femurs indicated increased fragility associated with reduced bone mass, recapitulating the progressive bone deterioration that occurs in HGPS patients. We investigated mechanisms of bone loss in KI mice at the cellular level in bone cell populations. Formation of wild-type and KI osteoclasts from marrow-derived precursors was inhibited by KI osteoblast-conditioned media in vitro, suggesting a secreted factor(s) responsible for decreased osteoclasts on KI trabecular surfaces in vivo. Cultured KI osteoblasts exhibited abnormal differentiation characterized by reduced deposition and mineralization of extracellular matrix with increased lipid accumulation compared to wild-type, providing a mechanism for altered bone formation. Furthermore, quantitative analyses of KI transcripts confirmed upregulation of adipogenic genes both in vitro and in vivo. Thus, osteoblast phenotypic plasticity, inflammation and altered cellular cross-talk contribute to abnormal bone formation in HGPS mice.


Assuntos
Senilidade Prematura , Doenças do Desenvolvimento Ósseo , Progéria , Camundongos , Animais , Progéria/genética , Progéria/metabolismo , Mutação , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Diferenciação Celular
6.
Am J Respir Cell Mol Biol ; 45(4): 817-24, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21378263

RESUMO

Asthma is etiologically and clinically heterogeneous, making the genomic basis of asthma difficult to identify. We exploited the strain-dependence of a murine model of allergic airway disease to identify different genomic responses in the lung. BALB/cJ and C57BL/6J mice were sensitized with the immunodominant allergen from the Dermatophagoides pteronyssinus species of house dust mite (Der p 1), without exogenous adjuvant, and the mice then underwent a single challenge with Der p 1. Allergic inflammation, serum antibody titers, mucous metaplasia, and airway hyperresponsiveness were evaluated 72 hours after airway challenge. Whole-lung gene expression analyses were conducted to identify genomic responses to allergen challenge. Der p 1-challenged BALB/cJ mice produced all the key features of allergic airway disease. In comparison, C57BL/6J mice produced exaggerated Th2-biased responses and inflammation, but exhibited an unexpected decrease in airway hyperresponsiveness compared with control mice. Lung gene expression analysis revealed genes that were shared by both strains and a set of down-regulated genes unique to C57BL/6J mice, including several G-protein-coupled receptors involved in airway smooth muscle contraction, most notably the M2 muscarinic receptor, which we show is expressed in airway smooth muscle and was decreased at the protein level after challenge with Der p 1. Murine strain-dependent genomic responses in the lung offer insights into the different biological pathways that develop after allergen challenge. This study of two different murine strains demonstrates that inflammation and airway hyperresponsiveness can be decoupled, and suggests that the down-modulation of expression of G-protein-coupled receptors involved in regulating airway smooth muscle contraction may contribute to this dissociation.


Assuntos
Alérgenos , Antígenos de Dermatophagoides/imunologia , Asma/genética , Hiper-Reatividade Brônquica/genética , Broncoconstrição/genética , Pulmão/imunologia , Resistência das Vias Respiratórias/genética , Animais , Proteínas de Artrópodes , Asma/imunologia , Asma/fisiopatologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/fisiopatologia , Testes de Provocação Brônquica , Broncoconstrição/efeitos dos fármacos , Broncoconstritores , Cisteína Endopeptidases , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Pulmão/fisiopatologia , Masculino , Cloreto de Metacolina , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Fenótipo , Receptores Acoplados a Proteínas G/genética , Células Th2/imunologia , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 105(41): 15902-7, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18838683

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is the most dramatic form of human premature aging. Death occurs at a mean age of 13 years, usually from heart attack or stroke. Almost all cases of HGPS are caused by a de novo point mutation in the lamin A (LMNA) gene that results in production of a mutant lamin A protein termed progerin. This protein is permanently modified by a lipid farnesyl group, and acts as a dominant negative, disrupting nuclear structure. Treatment with farnesyltransferase inhibitors (FTIs) has been shown to prevent and even reverse this nuclear abnormality in cultured HGPS fibroblasts. We have previously created a mouse model of HGPS that shows progressive loss of vascular smooth muscle cells in the media of the large arteries, in a pattern that is strikingly similar to the cardiovascular disease seen in patients with HGPS. Here we show that the dose-dependent administration of the FTI tipifarnib (R115777, Zarnestra) to this HGPS mouse model can significantly prevent both the onset of the cardiovascular phenotype as well as the late progression of existing cardiovascular disease. These observations provide encouraging evidence for the current clinical trial of FTIs for this rare and devastating disease.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Progéria/complicações , Animais , Doenças Cardiovasculares/etiologia , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/uso terapêutico , Camundongos , Progéria/tratamento farmacológico , Quinolonas/farmacologia , Quinolonas/uso terapêutico
8.
Aging Cell ; 20(9): e13457, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34453483

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare accelerated aging disorder most notably characterized by cardiovascular disease and premature death from myocardial infarction or stroke. The majority of cases are caused by a de novo single nucleotide mutation in the LMNA gene that activates a cryptic splice donor site, resulting in production of a toxic form of lamin A with a 50 amino acid internal deletion, termed progerin. We previously reported the generation of a transgenic murine model of progeria carrying a human BAC harboring the common mutation, G608G, which in the single-copy state develops features of HGPS that are limited to the vascular system. Here, we report the phenotype of mice bred to carry two copies of the BAC, which more completely recapitulate the phenotypic features of HGPS in skin, adipose, skeletal, and vascular tissues. We further show that genetic reduction of the mechanistic target of rapamycin (mTOR) significantly extends lifespan in these mice, providing a rationale for pharmacologic inhibition of the mTOR pathway in the treatment of HGPS.


Assuntos
Modelos Animais de Doenças , Longevidade , Progéria/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Serina-Treonina Quinases TOR/genética
9.
Nat Med ; 27(3): 536-545, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33707773

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare accelerated aging disorder characterized by premature death from myocardial infarction or stroke. It is caused by de novo single-nucleotide mutations in the LMNA gene that activate a cryptic splice donor site, resulting in the production of a toxic form of lamin A, which is termed progerin. Here we present a potential genetic therapeutic strategy that utilizes antisense peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) to block pathogenic splicing of mutant transcripts. Of several candidates, PPMO SRP-2001 provided the most significant decrease in progerin transcripts in patient fibroblasts. Intravenous delivery of SRP-2001 to a transgenic mouse model of HGPS produced significant reduction of progerin transcripts in the aorta, a particularly critical target tissue in HGPS. Long-term continuous treatment with SRP-2001 yielded a 61.6% increase in lifespan and rescue of vascular smooth muscle cell loss in large arteries. These results provide a rationale for proceeding to human trials.


Assuntos
Oligonucleotídeos Antissenso/uso terapêutico , Progéria/tratamento farmacológico , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Morfolinos/química
10.
G3 (Bethesda) ; 2(2): 157-65, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22384394

RESUMO

Hematological parameters, including red and white blood cell counts and hemoglobin concentration, are widely used clinical indicators of health and disease. These traits are tightly regulated in healthy individuals and are under genetic control. Mutations in key genes that affect hematological parameters have important phenotypic consequences, including multiple variants that affect susceptibility to malarial disease. However, most variation in hematological traits is continuous and is presumably influenced by multiple loci and variants with small phenotypic effects. We used a newly developed mouse resource population, the Collaborative Cross (CC), to identify genetic determinants of hematological parameters. We surveyed the eight founder strains of the CC and performed a mapping study using 131 incipient lines of the CC. Genome scans identified quantitative trait loci for several hematological parameters, including mean red cell volume (Chr 7 and Chr 14), white blood cell count (Chr 18), percent neutrophils/lymphocytes (Chr 11), and monocyte number (Chr 1). We used evolutionary principles and unique bioinformatics resources to reduce the size of candidate intervals and to view functional variation in the context of phylogeny. Many quantitative trait loci regions could be narrowed sufficiently to identify a small number of promising candidate genes. This approach not only expands our knowledge about hematological traits but also demonstrates the unique ability of the CC to elucidate the genetic architecture of complex traits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA