Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Small ; : e2400679, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488771

RESUMO

Chalcogel represents a unique class of meso- to macroporous nanomaterials that offer applications in energy and environmental pursuits. Here, the synthesis of an ion-exchangeable amorphous chalcogel using a nominal composition of K2 CoMo2 S10 (KCMS) at room temperature is reported. Synchrotron X-ray pair distribution function (PDF), X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) reveal a plausible local structure of KCMS gel consisting of Mo5+ 2 and Mo4+ 3 clusters in the vicinity of di/polysulfides which are covalently linked by Co2+ ions. The ionically bound K+ ions remain in the percolating pores of the Co-Mo-S covalent network. XANES of Co K-edge shows multiple electronic transitions, including quadrupole (1s→3d), shakedown (1s→4p + MLCT), and dipole allowed 1s→4p transitions. Remarkably, despite a lack of regular channels as in some crystalline solids, the amorphous KCMS gel shows ion-exchange properties with UO2 2+ ions. Additionally, it also presents surface sorption via [S∙∙∙∙UO2 2+ ] covalent interactions. Overall, this study underscores the synthesis of quaternary chalcogels incorporating alkali metals and their potential to advance separation science for cations and oxo-cationic species by integrating a synergy of surface sorption and ion-exchange.

2.
Inorg Chem ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935401

RESUMO

Optoelectronic devices based on lanthanide-containing materials are an emergent area of research due to imminent interest in a new generation of diode materials, optical and magnetic sensors, and ratiometric thermometers. Tailoring material properties through the employment of photo- or thermochromic moieties is a powerful approach that requires a deep fundamental understanding of possible cooperativity between lanthanide-based metal centers and integrated switchable units. In this work, we probe this concept through the synthesis, structural analysis, and spectroscopic characterization of novel photochromic lanthanide-based metal-organic materials containing noncoordinatively integrated photoresponsive 4,4'-azopyridine between lanthanide-based metal centers. As a result, a photophysical material response tailored on demand through the incorporation of photochromic compounds within a rigid matrix was investigated. The comprehensive analysis of photoresponsive metal-organic materials includes single-crystal X-ray diffraction and diffuse reflectance spectroscopic studies that provide guiding principles necessary for understanding photochromic unit-lanthanide-based metal-organic framework (MOF) cooperativity. Furthermore, steady-state and time-resolved diffuse reflectance spectroscopic studies revealed a rapid rate of photoresponsive moiety attenuation upon its integration within the rigid matrix of lanthanide-based MOFs in comparison with that in solution, highlighting a unique role and synergy that occurred between stimuli-responsive moieties and the lanthanide-based MOF platform, allowing for tunability and control of material photoisomerization kinetics.

3.
Environ Sci Technol ; 56(12): 8590-8598, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35647805

RESUMO

Removal of chromate (CrO42-) and pertechnetate (TcO4-) from the Hanford Low Activity Waste (LAW) is beneficial as it impacts the cost, life cycle, operational complexity of the Waste Treatment and Immobilization Plant (WTP), and integrity of vitrified glass for nuclear waste disposal. Here, we report the application of [MoIV3S13]2- intercalated layer double hydroxides (LDH-Mo3S13) for the removal of CrO42- as a surrogate for TcO4-, from ppm to ppb levels from water and a simulated LAW off-gas condensate of Hanford's WTP. LDH-Mo3S13 removes CrO42- from the LAW condensate stream, having a pH of 7.5, from ppm (∼9.086 × 104 ppb of Cr6+) to below 1 ppb levels with distribution constant (Kd) values of up to ∼107 mL/g. Analysis of postadsorbed solids indicates that CrO42- removal mainly proceeds by reduction of Cr6+ to Cr3+. This study sets the first example of a metal sulfide intercalated LDH for the removal of CrO42-, as relevant to TcO4-, from the simulated off-gas condensate streams of Hanford's LAW melter which contains highly concentrated competitive anions, namely F-, Cl-, CO32-, NO3-, BO33-, NO2-, SO42-, and B4O72-. LDH-Mo3S13's remarkable removal efficiency makes it a promising sorbent to remediate CrO42-/TcO4- from surface water and an off-gas condensate of nuclear waste.


Assuntos
Resíduos Radioativos , Cromatos , Hidróxidos , Água
4.
Am J Dent ; 31(Sp Is B): 42B-48B, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31099212

RESUMO

PURPOSE: The calcium ion [Ca(II)] release from monosodium titanates (MST) complexed to calcium ions [Ca(II)], referred to as MST-Ca(II), was examined under varying incubation times, pH conditions, and ion equilibrium disruptions. METHODS: Sample supernatants were analyzed for Ca(II) using the QuantiChrom Calcium Assay Kit. RESULTS: No Ca(II) was detected in native MST (control) supernatants but was detected in MST-Ca(II) supernatants. At pH 7, Ca(II) release increased from 0 to 2.5 mg/dL over 3 days (P< 0.05 compared to MST control), remaining constant over the completed incubation times. At pH 5, 15 mg/dL of Ca(II) was immediately released with no further release. When the pH was modulated pH 4 to pH 9, Ca(II) concentration dropped from 25 mg/dL to ~0 mg/dL. Finally, when equilibrium was disrupted by partial replacement of the supernatant with sterile water, Ca(II) release was ongoing, reaching a cumulative total of 20 mg/dL over 35 days. CLINICAL SIGNIFICANCE: The current results suggest that particulate MST-Ca(II) complexes exhibit sustained release of calcium, and that release might be customized by conditions of pH and ionic strength. Thus, these complexes appear promising for biological applications where calcium-mediated mineralization or re-mineralization are desired.


Assuntos
Cálcio , Minerais , Cálcio/metabolismo , Materiais Dentários , Concentração de Íons de Hidrogênio , Íons
5.
Anal Chem ; 89(10): 5174-5178, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28467072

RESUMO

The separation of hazardous metals from contaminated sources is commonly achieved with ion-exchange resins. The resins have a high surface area decorated with many ion-exchange sites and thus a high sorption capacity for the analyte of interest. However, these sites are primarily accessed by diffusion which limits the throughput and quality of the separation. Reported herein is a study of monolithic polyHIPE foam columns surface-grafted with a brush of polymer containing ion-exchange functionality for the separation of Pu. It was found that the loading curves of the foam material are steeper than a similarly scaled resin-based column, and the elution profiles of the foams were narrower than the resin, generating more concentrated eluate relative to the amount of Pu loaded onto the foam columns. On a gravimetric basis, the foams had a similar or greater Pu capacity than the resin with fewer ion-exchange sites per unit mass. These characteristics are mainly due to the convective mass transport which dominates the separation in the polyHIPE materials, suggesting that these materials may be useful for more efficient hazardous metal separations.

6.
Small ; 7(24): 3519-28, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22069305

RESUMO

Mesoporous silica nanospheres (MSNs) are a promising material for magnetic resonance imaging (MRI) contrast agents. In this paper multifunctional MSNs with cleavable Gd(III) chelates are synthesized and characterized, and their applicability as MRI contrast agents is demonstrated both in vitro and in vivo. The MSNs contain Gd(III) chelates that are covalently linked via a redox-responsive disulfide moiety. The MSNs are further functionalized with polyethylene glycol (PEG) and an anisamide ligand to improve their biocompatibility and target specificity. The effectiveness of MSNs as an MRI imaging contrast agent and their targeting ability are successfully demonstrated in vitro using human colon adenocarcinoma and pancreatic cancer cells. Finally, the capability of this platform as an in vivo MRI contrast agent is tested using a 3T scanner. The Gd(III) chelate was quickly cleaved by the blood pool thiols and eliminated through the renal excretion pathway. Further tuning of the Gd(III) chelate release kinetics is needed before the MSN system can be used as target-specific MRI contrast agents in vivo.


Assuntos
Quelantes/síntese química , Meios de Contraste/síntese química , Gadolínio/química , Rim/metabolismo , Imageamento por Ressonância Magnética/métodos , Nanosferas/química , Dióxido de Silício/química , Animais , Benzamidas/química , Quelantes/administração & dosagem , Quelantes/química , Meios de Contraste/química , Feminino , Gadolínio/administração & dosagem , Células HT29 , Humanos , Injeções Intravenosas , Camundongos , Camundongos Nus , Microscopia Confocal , Nanosferas/ultraestrutura , Oxirredução , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Porosidade
7.
J Environ Radioact ; 222: 106372, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32771856

RESUMO

There are few effective technologies for the sequestration of highly water-soluble pertechnetate (TcO4-) from contaminated water despite the urgency of environmental and public health concerns. In this work, anion exchanged and cetyltrimethylammonium bromide (CTAB) functionalized MIL-101-Cr-NO3 were investigated for perrhenate (ReO4-), a surrogate of TcO4-, sequestration from artificial groundwater. Cl-, I-, and CF3SO3- exchanged MIL-101-Cr proved more effective at ReO4- removal than the parent MIL-101-Cr-F. Compared to the parent framework, CTAB functionalized MIL-101-Cr-NO3 increased ReO4- removal capacity from 39 to 139 mg/g, improved the reaction kinetics from ~30 to <10 min to reach full adsorption capacity and the selectivity for ReO4- over competing NO3-, CO32-, SO42-, and Cl-. Spectroscopic data indicated that the chemical speciation of Re in the exchanged MIL-101-Cr remained ReO4-, indicating synergistic sequestration through both anion exchange and non-ion exchange binding with the positively charged ligand of CTAB. These studies foreshadow potential applications of MOFs for the remediation of 99TcO4- from contaminated environments.


Assuntos
Compostos de Amônio , Água Subterrânea , Estruturas Metalorgânicas , Monitoramento de Radiação , Ânions
8.
Nat Commun ; 11(1): 5571, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149147

RESUMO

Removal of 99TcO4- from legacy defense nuclear tank waste at Savannah River Site is highly desirable for the purpose of nuclear safety and environmental protection, but currently not achievable given the extreme conditions including high alkalinity, high ionic strength, and strong radiation field. Herein, we present a potential solution to this long-term issue by developing a two-dimensional cationic metal organic framework SCU-103, showing ultrahigh stability in alkaline aqueous media and great resistance to both ß and γ radiation. More importantly, it is very effective for 99TcO4- separation from aqueous media as demonstrated by fast exchange kinetics, high sorption capacity, and superior selectivity, leading to the successful removal of 99TcO4- from actual Savannah River Site high level tank waste for the first time, to the best of our knowledge. In addition, the uptake mechanism is comprehensively elucidated by molecular dynamics simulation and density functional theory calculation, showing a unique chemical recognition of anions with low charge density.

9.
J Am Chem Soc ; 131(40): 14261-3, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19807179

RESUMO

Fe(III)-carboxylate nanoscale metal-organic frameworks (NMOFs) with the MIL-101 structure were synthesized using a solvothermal technique with microwave heating. The approximately 200 nm particles were characterized using a variety of methods, including SEM, PXRD, nitrogen adsorption measurements, TGA, and EDX. By replacing a percentage of the bridging ligand (terephthalic acid) with 2-amino terephthalic acid, amine groups were incorporated into the framework to provide sites for covalent attachment of biologically relevant cargoes while still maintaining the MIL-101 structure. In proof-of-concept experiments, an optical contrast agent (a BODIPY dye) and an ethoxysuccinato-cisplatin anticancer prodrug were successfully incorporated into the Fe(III)-carboxylate NMOFs via postsynthetic modifications of the as-synthesized particles. These cargoes are released upon the degradation of the NMOF frameworks, and the rate of cargo release was controlled by coating the NMOF particles with a silica shell. Potential utility of the new NMOF-based nanodelivery vehicles for optical imaging and anticancer therapy was demonstrated in vitro using HT-29 human colon adenocarcinoma cells.


Assuntos
Ácidos Carboxílicos/química , Sistemas de Liberação de Medicamentos/métodos , Compostos Férricos/química , Nanopartículas Metálicas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Compostos de Boro/química , Ácidos Carboxílicos/administração & dosagem , Meios de Contraste/administração & dosagem , Meios de Contraste/química , Compostos Férricos/administração & dosagem , Células HT29 , Humanos , Nanopartículas Metálicas/administração & dosagem , Modelos Moleculares , Compostos Organoplatínicos/administração & dosagem , Compostos Organoplatínicos/química , Ácidos Ftálicos/química , Succinatos/administração & dosagem , Succinatos/química , Difração de Raios X
10.
J Hazard Mater ; 365: 306-311, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30447638

RESUMO

Remediation of legacy nuclear waste is one of the greatest challenges faced by the US Department of Energy, with projected cleanup efforts requiring over five decades and hundreds of billions of dollars. New materials are necessary to accelerate waste processing, achieving time and financial savings. Herein we report a peroxide treatment to a Ti metal-organic framework (MOF) and related MOF-templated adsorbents. The resulting materials displayed exceptional affinity for Am(III), achieving distribution coefficients in excess of 105 mL/g, and out-performing state-of-the-art benchmarks monosodium titanate (MST) and peroxo-treated modified MST (mMST) for removal of 85Sr(II) and 239, 240Pu(IV) from legacy nuclear waste simulant.

11.
J Hazard Mater ; 374: 177-185, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30999141

RESUMO

Technetium-99 (99Tc) is a major contaminant at nuclear power plants and several US Department of Energy sites. Its most common aqueous species, pertechnetate (TcO4-), is very mobile in the environment, and currently there are no effective technologies for its sequestration. In this work, a porous iron (pFe) material was investigated for TcO4- and perrhenate (ReO4-) sequestration from artificial groundwater. The pFe was significantly more effective than granular iron for both TcO4- and ReO4- sequestration under oxic conditions. The Tc removal capacity was 27.5 mg Tc/g pFe at pH ˜6.8, while the Re removal capacity was 23.9 mg Re/g pFe at pH ˜10.6. Tc K-edge XANES and EXAFS analyses indicated that the removed Tc species was 70-80% Tc(IV) that was likely incorporated into Fe corrosion products (i.e., Fe(OOH), Fe3O4) and 20-30% unreduced TcO4-. In contrast, the removed Re species was ReO4- only, without detectable Re(IV). In addition, the sequestered ReO4- was not extracted (<3%) by 0.1 M Na2SO4 and 1 M KI solution, which indicated that ReO4- and by chemical analogy, unreduced TcO4-, was likely incorporated into Fe corrosion products. This inexpensive pFe material may be applied to the sequestration and stabilization of 99TcO4- from contaminated environments and nuclear waste streams.

12.
ACS Omega ; 3(7): 8181-8189, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458955

RESUMO

The use of anion-exchange resins to separate and purify plutonium from various sources represents a major bottleneck in the throughput that can be achieved when this step is part of a larger separation scheme. Slow sorption kinetics and broad elution profiles necessitate long contact times with the resin, and the recovered Pu is relatively dilute, requiring the handling of large volumes of hazardous material. In this work, high internal-phase emulsion (HIPE) foams were prepared with a comonomer containing a dormant nitroxide. Using surface-initiated nitroxide-mediated polymerization, the foam surface was decorated with a brush of poly(4-vinylpyridine), and the resulting materials were tested under controlled flow conditions as anion-exchange media for plutonium separations. It was found that the grafted foams demonstrated greater ion-exchange capacity per unit volume than a commercial resin commonly used for Pu separations and had narrower elution profiles. The ion-exchange sites (quaternized pyridine) were exposed on the surface of the large pores of the foam, resulting in convective mass transfer, the driving force for the excellent separation properties exhibited by the synthesized polyHIPE foams.

13.
J Vis Exp ; (108): 53248, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26967828

RESUMO

This paper describes the synthesis and peroxide-modification of nanosize monosodium titanate (nMST), along with an ion-exchange reaction to load the material with Au(III) ions. The synthesis method was derived from a sol-gel process used to produce micron-sized monosodium titanate (MST), with several key modifications, including altering reagent concentrations, omitting a particle seed step, and introducing a non-ionic surfactant to facilitate control of particle formation and growth. The resultant nMST material exhibits spherical-shaped particle morphology with a monodisperse distribution of particle diameters in the range from 100 to 150 nm. The nMST material was found to have a Brunauer-Emmett-Teller (BET) surface area of 285 m(2)g(-1), which is more than an order of magnitude higher than the micron-sized MST. The isoelectric point of the nMST measured 3.34 pH units, which is a pH unit lower than that measured for the micron-size MST. The nMST material was found to serve as an effective ion exchanger under weakly acidic conditions for the preparation of an Au(III)-exchange nanotitanate. In addition, the formation of the corresponding peroxotitanate was demonstrated by reaction of the nMST with hydrogen peroxide.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Metais Alcalinos/química , Nanopartículas/química , Sódio/química , Titânio/química , Humanos , Tamanho da Partícula
14.
Biomed Res Int ; 2016: 7895182, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28044136

RESUMO

Monosodium titanates (MST) are a relatively novel form of particulate titanium dioxide that have been proposed for biological use as metal sorbents or delivery agents, most recently calcium (II). In these roles, the toxicity of the titanate or its metal complex is crucial to its biological utility. The aim of this study was to determine the cytotoxicity of MST and MST-calcium complexes with MC3T3 osteoblast-like cells; MST-Ca(II) complexes could be useful to promote bone formation in various hard tissue applications. MC3T3 cells were exposed to native MST or MST-Ca(II) complexes for 24-72 h. A CellTiter-Blue® assay was employed to assess the metabolic activity of the cells. The results showed that MST and MST-Ca(II) suppressed MC3T3 metabolic activity significantly in a dose-, time-, and cell-density-dependent fashion. MST-Ca(II) suppressed MC3T3 metabolism in a statistically identical manner as native MST at all concentrations. We concluded that MST and MST-Ca(II) are significantly cytotoxic to MC3T3 cells through a mechanism yet unknown; this is a potential problem to the biological utility of these complexes.


Assuntos
Cálcio/efeitos adversos , Osteoblastos/efeitos dos fármacos , Titânio/efeitos adversos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Camundongos , Osteogênese/efeitos dos fármacos
15.
J Biomed Mater Res B Appl Biomater ; 103(2): 254-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24819184

RESUMO

Previous studies report that microsized monosodium titanates (MSTs) deliver metal ions and species to mammalian cells and bacteria with cell-specific and metal-specific effects. In this study, we explored the use of MST and a new synthesized nanosized monosodium titanate (nMST) to deliver gold(III), cisplatin, or platinum(IV) to two human cell lines with different population doubling times, in vitro. The effect was measured using a fluorescent mitochondrial activity assay (CellTiter-Blue(®) Assay). This fluorescence assay was implemented to mitigate optical density measurement errors owing to particulate titanate interference and allowed for the studies to be extended to higher titanate concentrations than previously possible. Overall, native MST significantly (p < 0.05) decreased mitochondrial activity of both cell types by 50% at concentrations of >50 mg/L. Native nMST significantly suppressed the rapidly dividing cell line (by 50%) over untreated cultures, but had no effect on the more slowly dividing cells. For both cell types, increased titanate concentrations resulted in increased effects from delivered metals. However, there was no difference in the effect of metal delivered from micro- versus nano-sized MST.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ouro , Nanopartículas Metálicas/química , Mitocôndrias/metabolismo , Platina , Titânio , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/química , Cisplatino/farmacologia , Ouro/química , Ouro/farmacologia , Humanos , Platina/química , Platina/farmacologia , Titânio/química , Titânio/farmacologia
16.
Nanomaterials (Basel) ; 2(1): 1-14, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24527205

RESUMO

Several mesoporous silica nanoparticle (MSN) contrast agents have been synthesized using a co-condensation method to incorporate two different Gd3+ complexes at very high loadings (15.5-28.8 wt %). These MSN contrast agents, with an MCM-41 type pore structure, were characterized using a variety of methods including SEM and TEM, nitrogen adsorption measurements, thermogravimetric analysis (TGA), direct current plasma (DCP) spectroscopy, and powder X-ray diffraction (PXRD). The magnetic resonance (MR) relaxivities of these contrast agents were determined using a 3 T MR scanner. The r1 relaxivities of these nanoparticles range from 4.1 to 8.4 mM-1s-1 on a per Gd basis. Additionally, the MSN particles were functionalized with an organic fluorophore and cancer cell targeting peptide to allow for demonstration of both the optical and MR contrast enhancing capabilities in vitro.

17.
Nanomaterials (Basel) ; 2(1): 1-14, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28348292

RESUMO

Several mesoporous silica nanoparticle (MSN) contrast agents have been synthesized using a co-condensation method to incorporate two different Gd3+ complexes at very high loadings (15.5-28.8 wt %). These MSN contrast agents, with an MCM-41 type pore structure, were characterized using a variety of methods including SEM and TEM, nitrogen adsorption measurements, thermogravimetric analysis (TGA), direct current plasma (DCP) spectroscopy, and powder X-ray diffraction (PXRD). The magnetic resonance (MR) relaxivities of these contrast agents were determined using a 3 T MR scanner. The r1 relaxivities of these nanoparticles range from 4.1 to 8.4 mM-1s-1 on a per Gd basis. Additionally, the MSN particles were functionalized with an organic fluorophore and cancer cell targeting peptide to allow for demonstration of both the optical and MR contrast enhancing capabilities in vitro.

18.
Chem Commun (Camb) ; 46(32): 5832-49, 2010 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-20623072

RESUMO

Hybrid nanomaterials, composed of both inorganic and organic components, have recently been examined as promising platforms for imaging and therapeutic applications. This unique class of nanomaterials can not only retain beneficial features of both the inorganic and organic components, but also provides the ability to systematically tune the properties of the hybrid material through the combination of functional components. This feature article will summarize recent advances in the design and synthesis of hybrid nanomaterials and their applications in biological and biomedical areas. The hybrid nanomaterials to be discussed fall into two main categories, silica based materials and nanoscale metal-organic frameworks. Their applications as imaging contrast agents and nanotherapeutics will be highlighted.


Assuntos
Nanopartículas/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Humanos , Imageamento por Ressonância Magnética , Metais/química , Camundongos , Microscopia Confocal , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Ratos , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA