Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 587(7832): 103-108, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32999461

RESUMO

Plants grow within a complex web of species that interact with each other and with the plant1-10. These interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development7-9,11-18. Here, to understand how interactions between microorganisms influence root growth in Arabidopsis, we established a model system for interactions between plants, microorganisms and the environment. We inoculated seedlings with a 185-member bacterial synthetic community, manipulated the abiotic environment and measured bacterial colonization of the plant. This enabled us to classify the synthetic community into four modules of co-occurring strains. We deconstructed the synthetic community on the basis of these modules, and identified interactions between microorganisms that determine root phenotype. These interactions primarily involve a single bacterial genus (Variovorax), which completely reverses the severe inhibition of root growth that is induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulates plant hormone levels to balance the effects of our ecologically realistic synthetic root community on root growth. We identify an auxin-degradation operon that is conserved in all available genomes of Variovorax and is necessary and sufficient for the reversion of root growth inhibition. Therefore, metabolic signal interference shapes bacteria-plant communication networks and is essential for maintaining the stereotypic developmental programme of the root. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising ecological strategy for developing more resilient and productive crops.


Assuntos
Arabidopsis/microbiologia , Comamonadaceae/classificação , Comamonadaceae/fisiologia , Microbiota/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Comamonadaceae/genética , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Microbiota/genética , Óperon/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Rizosfera , Transdução de Sinais
2.
PLoS Genet ; 19(3): e1010636, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857386

RESUMO

Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Annu Rev Microbiol ; 74: 81-100, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32530732

RESUMO

Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plantmicrobiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments.


Assuntos
Bactérias/genética , Ecologia , Microbiota , Plantas/imunologia , Plantas/microbiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/imunologia , Bactérias/classificação , Bactérias/isolamento & purificação , Evolução Molecular , Filogenia , Fenômenos Fisiológicos Vegetais
4.
Nature ; 543(7646): 513-518, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28297714

RESUMO

Plants live in biogeochemically diverse soils with diverse microbiota. Plant organs associate intimately with a subset of these microbes, and the structure of the microbial community can be altered by soil nutrient content. Plant-associated microbes can compete with the plant and with each other for nutrients, but may also carry traits that increase the productivity of the plant. It is unknown how the plant immune system coordinates microbial recognition with nutritional cues during microbiome assembly. Here we establish that a genetic network controlling the phosphate stress response influences the structure of the root microbiome community, even under non-stress phosphate conditions. We define a molecular mechanism regulating coordination between nutrition and defence in the presence of a synthetic bacterial community. We further demonstrate that the master transcriptional regulators of phosphate stress response in Arabidopsis thaliana also directly repress defence, consistent with plant prioritization of nutritional stress over defence. Our work will further efforts to define and deploy useful microbes to enhance plant performance.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Microbiota/fisiologia , Fosfatos/metabolismo , Imunidade Vegetal , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microbiota/imunologia , Mutação , Imunidade Vegetal/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
PLoS Biol ; 17(11): e3000534, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31721759

RESUMO

Phosphate starvation response (PSR) in nonmycorrhizal plants comprises transcriptional reprogramming resulting in severe physiological changes to the roots and shoots and repression of plant immunity. Thus, plant-colonizing microorganisms-the plant microbiota-are exposed to direct influence by the soil's phosphorus (P) content itself as well as to the indirect effects of soil P on the microbial niches shaped by the plant. The individual contribution of these factors to plant microbiota assembly remains unknown. To disentangle these direct and indirect effects, we planted PSR-deficient Arabidopsis mutants in a long-term managed soil P gradient and compared the composition of their shoot and root microbiota to wild-type plants across different P concentrations. PSR-deficiency had a larger effect on the composition of both bacterial and fungal plant-associated microbiota than soil P concentrations in both roots and shoots. To dissect plant-microbe interactions under variable P conditions, we conducted a microbiota reconstitution experiment. Using a 185-member bacterial synthetic community (SynCom) across a wide P concentration gradient in an agar matrix, we demonstrated a shift in the effect of bacteria on the plant from a neutral or positive interaction to a negative one, as measured by rosette size. This phenotypic shift was accompanied by changes in microbiota composition: the genus Burkholderia was specifically enriched in plant tissue under P starvation. Through a community drop-out experiment, we demonstrated that in the absence of Burkholderia from the SynCom, plant shoots accumulated higher ortophosphate (Pi) levels than shoots colonized with the full SynCom but only under Pi starvation conditions. Therefore, Pi-stressed plants are susceptible to colonization by latent opportunistic competitors found within their microbiome, thus exacerbating the plant's Pi starvation.


Assuntos
Arabidopsis/microbiologia , Fósforo/análise , Solo/química , Arabidopsis/metabolismo , Burkholderia/fisiologia , Microbiota , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Estresse Fisiológico
6.
PLoS Biol ; 16(2): e2003962, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462153

RESUMO

Specific members of complex microbiota can influence host phenotypes, depending on both the abiotic environment and the presence of other microorganisms. Therefore, it is challenging to define bacterial combinations that have predictable host phenotypic outputs. We demonstrate that plant-bacterium binary-association assays inform the design of small synthetic communities with predictable phenotypes in the host. Specifically, we constructed synthetic communities that modified phosphate accumulation in the shoot and induced phosphate starvation-responsive genes in a predictable fashion. We found that bacterial colonization of the plant is not a predictor of the plant phenotypes we analyzed. Finally, we demonstrated that characterizing a subset of all possible bacterial synthetic communities is sufficient to predict the outcome of untested bacterial consortia. Our results demonstrate that it is possible to infer causal relationships between microbiota membership and host phenotypes and to use these inferences to rationally design novel communities.


Assuntos
Bactérias/isolamento & purificação , Brassicaceae/microbiologia , Interações entre Hospedeiro e Microrganismos , Consórcios Microbianos , Bactérias/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Genes Bacterianos , Genes de Plantas , Fosfatos/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/metabolismo , RNA Ribossômico 16S/genética , Simbiose
7.
BMC Genomics ; 19(1): 58, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343217

RESUMO

BACKGROUND: The Ceratocystis genus harbors a large number of phytopathogenic fungi that cause xylem parenchyma degradation and vascular destruction on a broad range of economically important plants. Ceratocystis cacaofunesta is a necrotrophic fungus responsible for lethal wilt disease in cacao. The aim of this work is to analyze the genome of C. cacaofunesta through a comparative approach with genomes of other Sordariomycetes in order to better understand the molecular basis of pathogenicity in the Ceratocystis genus. RESULTS: We present an analysis of the C. cacaofunesta genome focusing on secreted proteins that might constitute pathogenicity factors. Comparative genome analyses among five Ceratocystidaceae species and 23 other Sordariomycetes fungi showed a strong reduction in gene content of the Ceratocystis genus. However, some gene families displayed a remarkable expansion, in particular, the Phosphatidylinositol specific phospholipases-C (PI-PLC) family. Also, evolutionary rate calculations suggest that the evolution process of this family was guided by positive selection. Interestingly, among the 82 PI-PLCs genes identified in the C. cacaofunesta genome, 70 genes encoding extracellular PI-PLCs are grouped in eight small scaffolds surrounded by transposon fragments and scars that could be involved in the rapid evolution of the PI-PLC family. Experimental secretome using LC-MS/MS validated 24% (86 proteins) of the total predicted secretome (342 proteins), including four PI-PLCs and other important pathogenicity factors. CONCLUSION: Analysis of the Ceratocystis cacaofunesta genome provides evidence that PI-PLCs may play a role in pathogenicity. Subsequent functional studies will be aimed at evaluating this hypothesis. The observed genetic arsenals, together with the analysis of the PI-PLC family shown in this work, reveal significant differences in the Ceratocystis genome compared to the classical vascular fungi, Verticillium and Fusarium. Altogether, our analyses provide new insights into the evolution and the molecular basis of plant pathogenicity.


Assuntos
Ascomicetos/genética , Cacau/microbiologia , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas , Genoma Fúngico , Genômica/métodos , Fosfoinositídeo Fosfolipase C/genética , Ascomicetos/metabolismo , Evolução Molecular , Proteínas Fúngicas/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/metabolismo , Filogenia , Conformação Proteica
8.
Plant Cell ; 26(11): 4245-69, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25371547

RESUMO

Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.


Assuntos
Agaricales/fisiologia , Cacau/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Transcriptoma , Agaricales/patogenicidade , Sequência de Bases , Cacau/citologia , Cacau/microbiologia , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Biológicos , Dados de Sequência Molecular , Micélio , Fotossíntese , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Virulência
9.
Biochem Biophys Res Commun ; 466(4): 629-36, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26367180

RESUMO

Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M. perniciosa pathogenicity.


Assuntos
Agaricales/genética , Agaricales/patogenicidade , Cacau/microbiologia , Proteínas Fúngicas/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Proteínas Fúngicas/fisiologia , Expressão Gênica , Dados de Sequência Molecular , Família Multigênica , Filogenia , RNA Fúngico/genética , Homologia de Sequência de Aminoácidos , Virulência/genética , Virulência/fisiologia
10.
BMC Plant Biol ; 14: 256, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25260963

RESUMO

BACKGROUND: Nitrogen (N) is a main nutrient required for tree growth and biomass accumulation. In this study, we analyzed the effects of contrasting nitrogen fertilization treatments on the phenotypes of fast growing Eucalyptus hybrids (E. urophylla x E. grandis) with a special focus on xylem secondary cell walls and global gene expression patterns. RESULTS: Histological observations of the xylem secondary cell walls further confirmed by chemical analyses showed that lignin was reduced by luxuriant fertilization, whereas a consistent lignin deposition was observed in trees grown in N-limiting conditions. Also, the syringyl/guaiacyl (S/G) ratio was significantly lower in luxuriant nitrogen samples. Deep sequencing RNAseq analyses allowed us to identify a high number of differentially expressed genes (1,469) between contrasting N treatments. This number is dramatically higher than those obtained in similar studies performed in poplar but using microarrays. Remarkably, all the genes involved the general phenylpropanoid metabolism and lignin pathway were found to be down-regulated in response to high N availability. These findings further confirmed by RT-qPCR are in agreement with the reduced amount of lignin in xylem secondary cell walls of these plants. CONCLUSIONS: This work enabled us to identify, at the whole genome level, xylem genes differentially regulated by N availability, some of which are involved in the environmental control of xylogenesis. It further illustrates that N fertilization can be used to alter the quantity and quality of lignocellulosic biomass in Eucalyptus, offering exciting prospects for the pulp and paper industry and for the use of short coppices plantations to produce second generation biofuels.


Assuntos
Parede Celular/metabolismo , Eucalyptus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lignina/metabolismo , Nitrogênio/farmacologia , Xilema/efeitos dos fármacos , Eucalyptus/genética , Eucalyptus/metabolismo , Fertilizantes , Fenótipo , Árvores , Madeira/efeitos dos fármacos , Madeira/metabolismo , Xilema/genética , Xilema/metabolismo
11.
BMC Genomics ; 14: 201, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23521840

RESUMO

BACKGROUND: Eucalyptus is one of the most important sources of industrial cellulose. Three species of this botanical group are intensively used in breeding programs: E. globulus, E. grandis and E. urophylla. E. globulus is adapted to subtropical/temperate areas and is considered a source of high-quality cellulose; E. grandis grows rapidly and is adapted to tropical/subtropical climates; and E. urophylla, though less productive, is considered a source of genes related to robustness. Wood, or secondary xylem, results from cambium vascular differentiation and is mostly composed of cellulose, lignin and hemicelluloses. In this study, the xylem transcriptomes of the three Eucalyptus species were investigated in order to provide insights on the particularities presented by each of these species. RESULTS: Data analysis showed that (1) most Eucalyptus genes are expressed in xylem; (2) most genes expressed in species-specific way constitutes genes with unknown functions and are interesting targets for future studies; (3) relevant differences were observed in the phenylpropanoid pathway: E. grandis xylem presents higher expression of genes involved in lignin formation whereas E. urophylla seems to deviates the pathway towards flavonoid formation; (4) stress-related genes are considerably more expressed in E. urophylla, suggesting that these genes may contribute to its robustness. CONCLUSIONS: The comparison of these three transcriptomes indicates the molecular signatures underlying some of their distinct wood characteristics. This information may contribute to the understanding of xylogenesis, thus increasing the potential of genetic engineering approaches aiming at the improvement of Eucalyptus forest plantations productivity.


Assuntos
Eucalyptus/genética , Transcriptoma , Parede Celular/genética , Parede Celular/metabolismo , Mapeamento de Sequências Contíguas , Bases de Dados Factuais , Eucalyptus/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilema/genética , Xilema/metabolismo
12.
J Fungi (Basel) ; 9(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37623619

RESUMO

Austropuccinia psidii is a biotrophic fungus that causes myrtle rust. First described in Brazil, it has since spread to become a globally important pathogen that infects more than 480 myrtaceous species. One of the most important commercial crops affected by A. psidii is eucalypt, a widely grown forestry tree. The A. psidii-Eucalyptus spp. interaction is poorly understood, but pathogenesis is likely driven by pathogen-secreted effector molecules. Here, we identified and characterized a total of 255 virulence effector candidates using a genome assembly of A. psidii strain MF-1, which was recovered from Eucalyptus grandis in Brazil. We show that the expression of seven effector candidate genes is modulated by cell wax from leaves sourced from resistant and susceptible hosts. Two effector candidates with different subcellular localization predictions, and with specific gene expression profiles, were transiently expressed with GFP-fusions in Nicotiana benthamiana leaves. Interestingly, we observed the accumulation of an effector candidate, Ap28303, which was upregulated under cell wax from rust susceptible E. grandis and described as a peptidase inhibitor I9 domain-containing protein in the nucleus. This was in accordance with in silico analyses. Few studies have characterized nuclear effectors. Our findings open new perspectives on the study of A. psidii-Eucalyptus interactions by providing a potential entry point to understand how the pathogen manipulates its hosts in modulating physiology, structure, or function with effector proteins.

14.
Biochemistry ; 50(45): 9901-10, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21999603

RESUMO

The necrosis- and ethylene-inducing peptide 1 (NEP1)-like proteins (NLPs) are proteins secreted from bacteria, fungi and oomycetes, triggering immune responses and cell death in dicotyledonous plants. Genomic-scale studies of Moniliophthora perniciosa, the fungus that causes the Witches' Broom disease in cacao, which is a serious economic concern for South and Central American crops, have identified five members of this family (termed MpNEP1-5). Here, we show by RNA-seq that MpNEP2 is virtually the only NLP expressed during the fungus infection. The quantitative real-time polymerase chain reaction results revealed that MpNEP2 has an expression pattern that positively correlates with the necrotic symptoms, with MpNEP2 reaching its highest level of expression at the advanced necrotic stage. To improve our understanding of MpNEP2's molecular mechanism of action, we determined the crystallographic structure of MpNEP2 at 1.8 Å resolution, unveiling some key structural features. The implications of a cation coordination found in the crystal structure were explored, and we show that MpNEP2, in contrast to another previously described member of the NLP family, NLP(Pya) from Pythium aphanidermatum, does not depend on an ion to accomplish its necrosis- and electrolyte leakage-promoting activities. Results of site-directed mutagenesis experiments confirmed the importance of a negatively charged cavity and an unforeseen hydrophobic ß-hairpin loop for MpNEP2 activity, thus offering a platform for compound design with implications for disease control. Electron paramagnetic resonance and fluorescence assays with MpNEP2 performed in the presence of lipid vesicles of different compositions showed no sign of interaction between the protein and the lipids, implying that MpNEP2 likely requires other anchoring elements from the membrane to promote cytolysis or send death signals.


Assuntos
Agaricales/química , Agaricales/patogenicidade , Cacau/microbiologia , Proteínas Fúngicas/química , Doenças das Plantas/microbiologia , Agaricales/genética , Agaricales/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , Primers do DNA/genética , Etilenos/biossíntese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Nicotiana/microbiologia
16.
Curr Biol ; 28(18): 3023-3030.e5, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30220500

RESUMO

Crop diseases caused by fungi constitute one of the most important problems in agriculture, posing a serious threat to food security [1]. To establish infection, phytopathogens interfere with plant immune responses [2, 3]. However, strategies to promote virulence employed by fungal pathogens, especially non-model organisms, remain elusive [4], mainly because fungi are more complex and difficult to study when compared to the better-characterized bacterial pathogens. Equally incomplete is our understanding of the birth of microbial virulence effectors. Here, we show that the cacao pathogen Moniliophthora perniciosa evolved an enzymatically inactive chitinase (MpChi) that functions as a putative pathogenicity factor. MpChi is among the most highly expressed fungal genes during the biotrophic interaction with cacao and encodes a chitinase with mutations that abolish its enzymatic activity. Despite the lack of chitinolytic activity, MpChi retains substrate binding specificity and prevents chitin-triggered immunity by sequestering immunogenic chitin fragments. Remarkably, its sister species M. roreri encodes a second non-orthologous catalytically impaired chitinase with equivalent function. Thus, a class of conserved enzymes independently evolved as putative virulence factors in these fungi. In addition to unveiling a strategy of host immune suppression by fungal pathogens, our results demonstrate that the neofunctionalization of enzymes may be an evolutionary pathway for the rise of new virulence factors in fungi. We anticipate that analogous strategies are likely employed by other pathogens.


Assuntos
Agaricales/fisiologia , Cacau/imunologia , Quitinases/genética , Proteínas Fúngicas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal , Agaricales/genética , Sequência de Aminoácidos , Cacau/microbiologia , Quitinases/química , Quitinases/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Alinhamento de Sequência
17.
Nat Commun ; 8: 15309, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28474674

RESUMO

Transcript levels are a critical determinant of the proteome and hence cellular function. Because the transcriptome is an outcome of the interactions between genes and their products, it may be accurately represented by a subset of transcript abundances. We develop a method, Tradict (transcriptome predict), capable of learning and using the expression measurements of a small subset of 100 marker genes to predict transcriptome-wide gene abundances and the expression of a comprehensive, but interpretable list of transcriptional programs that represent the major biological processes and pathways of the cell. By analyzing over 23,000 publicly available RNA-Seq data sets, we show that Tradict is robust to noise and accurate. Coupled with targeted RNA sequencing, Tradict may therefore enable simultaneous transcriptome-wide screening and mechanistic investigation at large scales.


Assuntos
Algoritmos , Biologia Computacional/métodos , Eucariotos/genética , Transcrição Gênica , Animais , Arabidopsis/genética , Arabidopsis/imunologia , Humanos , Imunidade Inata/genética , Transdução de Sinais , Transcriptoma/genética
18.
Cell Host Microbe ; 21(2): 156-168, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28132837

RESUMO

Independently evolved pathogen effectors from three branches of life (ascomycete, eubacteria, and oomycete) converge onto the Arabidopsis TCP14 transcription factor to manipulate host defense. However, the mechanistic basis for defense control via TCP14 regulation is unknown. We demonstrate that TCP14 regulates the plant immune system by transcriptionally repressing a subset of the jasmonic acid (JA) hormone signaling outputs. A previously unstudied Pseudomonas syringae (Psy) type III effector, HopBB1, interacts with TCP14 and targets it to the SCFCOI1 degradation complex by connecting it to the JA signaling repressor JAZ3. Consequently, HopBB1 de-represses the TCP14-regulated subset of JA response genes and promotes pathogen virulence. Thus, HopBB1 fine-tunes host phytohormone crosstalk by precisely manipulating part of the JA regulon to avoid pleiotropic host responses while promoting pathogen proliferation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Interações Hospedeiro-Patógeno/genética , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Regiões Promotoras Genéticas , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Nicotiana/genética , Fatores de Transcrição/genética
19.
Genome Announc ; 4(1)2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26769937

RESUMO

Candida boidinii and Candida sojae yeasts were isolated from energy cane bagasse and plague-insects. Both have fast xylose uptake rate and produce great amounts of xylitol, which are interesting features for food and 2G ethanol industries. Because they lack published genomes, we have sequenced and assembled them, offering new possibilities for gene prospection.

20.
Mol Plant Pathol ; 14(6): 602-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23573899

RESUMO

Members of the pathogenesis-related protein 1 (PR-1) family are well-known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacao L.) PR-1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor-like kinases (RLKs). These proteins (TcPR-1f and TcPR-1g) were named PR-1 receptor kinases (PR-1RKs). Phylogenetic analysis of RLKs and PR-1 proteins from cacao indicated that PR-1RKs originated from a fusion between sequences encoding PR-1 and the kinase domain of a LecRLK (Lectin Receptor-Like Kinase). Retrotransposition marks surround TcPR-1f, suggesting that retrotransposition was involved in the origin of PR-1RKs. Genes with a similar domain architecture to cacao PR-1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR-1g expression was up-regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR-1RKs during cacao defence responses. We hypothesize that PR-1RKs transduce a defence signal by interacting with a PR-1 ligand.


Assuntos
Cacau/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Filogenia , Doenças das Plantas , Proteínas de Plantas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA