Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Genomics ; 23(1): 181, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247961

RESUMO

BACKGROUND: Meiotic recombination is one of the important phenomena contributing to gamete genome diversity. However, except for human and a few model organisms, it is not well studied in livestock, including cattle. RESULTS: To investigate their distributions in the cattle sperm genome, we sequenced 143 single sperms from two Holstein bulls. We mapped meiotic recombination events at high resolution based on phased heterozygous single nucleotide polymorphism (SNP). In the absence of evolutionary selection pressure in fertilization and survival, recombination events in sperm are enriched near distal chromosomal ends, revealing that such a pattern is intrinsic to the molecular mechanism of meiosis. Furthermore, we further validated these findings in single sperms with results derived from sequencing its family trio of diploid genomes and our previous studies of recombination in cattle. CONCLUSIONS: To our knowledge, this is the first large-scale single sperm whole-genome sequencing effort in livestock, which provided useful information for future studies of recombination, genome instability, and male infertility.


Assuntos
Meiose , Recombinação Genética , Animais , Bovinos/genética , Mapeamento Cromossômico , Masculino , Meiose/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Espermatozoides
2.
Biol Reprod ; 106(4): 629-638, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35094055

RESUMO

Increased knowledge of reproduction and health of domesticated animals is integral to sustain and improve global competitiveness of U.S. animal agriculture, understand and resolve complex animal and human diseases, and advance fundamental research in sciences that are critical to understanding mechanisms of action and identifying future targets for interventions. Historically, federal and state budgets have dwindled and funding for the United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) competitive grants programs remained relatively stagnant from 1985 through 2010. This shortage in critical financial support for basic and applied research, coupled with the underappreciated knowledge of the utility of non-rodent species for biomedical research, hindered funding opportunities for research involving livestock and limited improvements in both animal agriculture and animal and human health. In 2010, the National Institutes of Health and USDA NIFA established an interagency partnership to promote the use of agriculturally important animal species in basic and translational research relevant to both biomedicine and agriculture. This interagency program supported 61 grants totaling over $107 million with 23 awards to new or early-stage investigators. This article will review the success of the 9-year Dual Purpose effort and highlight opportunities for utilizing domesticated agricultural animals in research.


Assuntos
Agricultura , Animais Domésticos , Animais , Gado , National Institutes of Health (U.S.) , Estados Unidos , United States Department of Agriculture
3.
Adv Anat Embryol Cell Biol ; 234: 21-40, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34694476

RESUMO

The preimplantation mammalian embryo is a simplistic, self-contained, and a superior model for investigating the inherent complexities of cell fate decision mechanisms. All mammals begin their humble journey from a single-cell fertilized zygote contained within a proteinaceous coat called the zona pellucida. The zygote embarks on a series of well-orchestrated events, beginning with the activation of embryonic genome, transition from meiotic to mitotic divisions, spatial organization of the cells, timely differentiation into committed trophectoderm (TE) and primitive endoderm (PrE), and ultimately escape from zona pellucida for implantation into the uterus. The entire development of preimplantation embryo can be studied in vitro using a minimalistic and defined culture system. The ease of culture along with the ability to manipulate gene expression and image the embryos makes them an ideal model system for investigation into the first two of several cell fate decisions made by the embryo that result in a pluripotent epiblast (EPI) and differentiated TE and PrE lineages. This chapter reviews our latest knowledge of preimplantation embryo development, setting the stage for understanding placental development in subsequent chapters in this Book.


Assuntos
Blastocisto , Placenta , Animais , Blastocisto/metabolismo , Diferenciação Celular/fisiologia , Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Endoderma , Feminino , Mamíferos , Gravidez
4.
Biol Reprod ; 100(1): 208-216, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085007

RESUMO

Placental hypoxia can stimulate oxidative stress and mitochondrial dysfunction reducing placental efficiency and inducing fetal growth restriction (FGR). We hypothesized that chronic hypoxia inhibits mitochondrial function in the placenta as an underlying cause of cellular mechanisms contributing to FGR. Pregnant guinea pigs were exposed to either normoxia (NMX) or hypoxia (HPX; 10.5% O2) at 25 day gestation until term (65 day). Guinea pigs were anesthetized, and fetuses and placentas were excised at either mid (40 day) or late gestation (64 day), weighed, and placental tissue stored at -80°C until assayed. Mitochondrial DNA content, protein expression of respiratory Complexes I-V, and nitration and activity rates of Complexes I and IV were measured in NMX and HPX male (N = 6 in each treatment) and female (N = 6 in each treatment) placentas. Mitochondrial density was not altered by HPX in either mid- or late-term placentas. In mid gestation, HPX slightly increased expression of Complexes I-III and V in male placentas only, but had no effect on either Complex I or IV activity rates or nitrotyrosine expression. In late gestation, HPX significantly decreased CI/CIV activity rates and increased CI/CIV nitration in male but not female placentas exhibiting a sexual dimorphism. Complex I-V expression was reduced from mid to late gestation in both male and female placentas regardless of treatment. We conclude that chronic HPX decreases mitochondrial function by inhibiting Complex I/IV activity via increased peroxynitrite in a sex-related manner. Further, there may be a progressive decrease in energy metabolism of placental cell types with gestation that increases the vulnerability of placental function to intrauterine stress.


Assuntos
Hipóxia/fisiopatologia , Mitocôndrias/fisiologia , Placenta/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Animais , DNA Mitocondrial/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/fisiopatologia , Hipóxia Fetal/genética , Hipóxia Fetal/metabolismo , Hipóxia Fetal/patologia , Hipóxia Fetal/fisiopatologia , Peso Fetal/fisiologia , Hipóxia/metabolismo , Masculino , Tamanho do Órgão , Estresse Oxidativo/fisiologia , Placenta/metabolismo , Placenta/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
5.
Mamm Genome ; 28(7-8): 338-347, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28712062

RESUMO

Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.


Assuntos
Agricultura , Pesquisa Biomédica , Edição de Genes , Engenharia Genética , Genoma , Gado/genética , Agricultura/métodos , Animais , Animais Domésticos , Cruzamento , Edição de Genes/métodos , Engenharia Genética/métodos , Humanos
6.
J Pathol ; 238(2): 247-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26414877

RESUMO

The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site-specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies.


Assuntos
Modelos Animais de Doenças , Engenharia Genética/métodos , Mutação/genética , Alelos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Pesquisas com Embriões , Previsões , Mutação da Fase de Leitura/genética , Engenharia Genética/tendências , Humanos , Técnicas de Transferência Nuclear , Primatas , Suínos , Ativação Transcricional/genética , Dedos de Zinco/genética
7.
Biol Reprod ; 95(6): 128, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27806942

RESUMO

Chronic placental hypoxia is one of the root causes of placental insufficiencies that result in pre-eclampsia and maternal hypertension. Chronic hypoxia causes disruption of trophoblast (TB) development, invasion into maternal decidua, and remodeling of maternal spiral arteries. The pregnant guinea pig shares several characteristics with humans such as hemomonochorial placenta, villous subplacenta, deep TB invasion, and remodeling of maternal arteries, and is an ideal animal model to study placental development. We hypothesized that chronic placental hypoxia of the pregnant guinea pig inhibits TB invasion and alters spiral artery remodeling. Time-mated pregnant guinea pigs were exposed to either normoxia (NMX) or three levels of hypoxia (HPX: 16%, 12%, or 10.5% O2) from 20 day gestation until midterm (39-40 days) or term (60-65 days). At term, HPX (10.5% O2) increased maternal arterial blood pressure (HPX 57.9 ± 2.3 vs. NMX 40.4 ± 2.3, P < 0.001), decreased fetal weight by 16.1% (P < 0.05), and increased both absolute and relative placenta weights by 10.1% and 31.8%, respectively (P < 0.05). At midterm, there was a significant increase in TB proliferation in HPX placentas as confirmed by increased PCNA and KRT7 staining and elevated ESX1 (TB marker) gene expression (P < 0.05). Additionally, quantitative image analysis revealed decreased invasion of maternal blood vessels by TB cells. In summary, this animal model of placental HPX identifies several aspects of abnormal placental development, including increased TB proliferation and decreased migration and invasion of TBs into the spiral arteries, the consequences of which are associated with maternal hypertension and fetal growth restriction.


Assuntos
Hipertensão Induzida pela Gravidez/etiologia , Hipóxia/complicações , Placenta/metabolismo , Insuficiência Placentária/etiologia , Animais , Pressão Sanguínea/fisiologia , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Feminino , Cobaias , Hipertensão Induzida pela Gravidez/metabolismo , Hipertensão Induzida pela Gravidez/fisiopatologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Queratina-7/metabolismo , Tamanho do Órgão/fisiologia , Placenta/fisiopatologia , Insuficiência Placentária/metabolismo , Insuficiência Placentária/fisiopatologia , Placentação , Gravidez , Antígeno Nuclear de Célula em Proliferação/metabolismo , Remodelação Vascular/fisiologia
8.
Int J Mol Sci ; 17(6)2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27240344

RESUMO

The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT). By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP) transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals.


Assuntos
Colágeno Tipo I/genética , Técnicas de Introdução de Genes/métodos , Ribonucleoproteínas/metabolismo , Suínos/genética , Animais , Animais Geneticamente Modificados , Sítios de Ligação Microbiológicos , Sistemas CRISPR-Cas , Células Cultivadas , Fibroblastos/citologia , Marcação de Genes , Engenharia Genética/métodos , Humanos , Integrases/metabolismo , Técnicas de Transferência Nuclear
9.
Int J Mol Sci ; 17(12)2016 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-27918485

RESUMO

The domestic pig is an ideal "dual purpose" animal model for agricultural and biomedical research. With the availability of genome editing tools such as clustered regularly interspaced short palindromic repeat (CRISPR) and associated nuclease Cas9 (CRISPR/Cas9), it is now possible to perform site-specific alterations with relative ease, and will likely help realize the potential of this valuable model. In this article, we investigated for the first time a combination of somatic cell nuclear transfer (SCNT) and direct injection of CRISPR/Cas ribonucleoprotein complex targeting GRB10 into the reconstituted oocytes to generate GRB10 ablated Ossabaw fetuses. This strategy resulted in highly efficient (100%) generation of biallelic modifications in cloned fetuses. By combining SCNT with CRISPR/Cas9 microinjection, genome edited animals can now be produced without the need to manage a founder herd, while simultaneously eliminating the need for laborious in vitro culture and screening. Our approach utilizes standard cloning techniques while simultaneously performing genome editing in the cloned zygotes of a large animal model for agriculture and biomedical applications.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma , Microinjeções/métodos , Técnicas de Transferência Nuclear , Sus scrofa/genética , Animais , Clonagem de Organismos , Técnicas de Genotipagem , RNA Guia de Cinetoplastídeos/metabolismo , Zigoto/metabolismo
10.
Mol Reprod Dev ; 82(9): 709-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26118622

RESUMO

The creation of genetically modified goats provides a powerful approach for improving animal health, enhancing production traits, animal pharming, and for ensuring food safety all of which are high-priority goals for animal agriculture. The availability of goat embryonic stem cells (ESCs) that are characteristically immortal in culture would be of enormous benefit for developing genetically modified animals. As an alternative to long-sought goat ESCs, we generated induced pluripotent stem cells (iPSC) by forced expression of bovine POU5F1, SOX2, MYC, KLF4, LIN-28, and NANOG reprogramming factors in combination with a MIR302/367 cluster, delivered by lentiviral vectors. In order to minimize integrations, the reprogramming factor coding sequences were assembled with porcine teschovirus-1 2A (P2A) self-cleaving peptides that allowed for tri-cistronic expression from each vector. The lentiviral-transduced cells were cultured on irradiated mouse feeder cells in a semi-defined, serum-free medium containing fibroblast growth factor (FGF) and/or leukemia inhibitory factor (LIF). The resulting goat iPSC exhibit cell and colony morphology typical of human and mouse ESCs-that is, well-defined borders, a high nuclear-to-cytoplasmic ratio, a short cell-cycle interval, alkaline phosphatase expression, and the ability to generate teratomas in vivo. Additionally, these goat iPSC demonstrated the ability to differentiate into directed lineages in vitro. These results constitute the first steps in establishing integration and footprint-free iPSC from ruminants. Mol. Reprod. Dev. 82: 709-721, 2015. © 2015 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Cabras/genética , Células-Tronco Pluripotentes Induzidas , Animais , Bovinos , Técnicas de Cultura de Células/métodos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Fator 4 Semelhante a Kruppel , Camundongos , Pesquisa com Células-Tronco
11.
Sci Rep ; 14(1): 14822, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937564

RESUMO

Milk is a good source of nutrition but is also a source of allergenic proteins such as α-lactalbumin, ß-lactoglobulin (BLG), casein, and immunoglobulins. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas technology has the potential to edit any gene, including milk allergens. Previously, CRISPR/Cas has been successfully employed in dairy cows and goats, but buffaloes remain unexplored for any milk trait. In this study, we utilized the CRISPR/Cas9 system to edit the major milk allergen BLG gene in buffaloes. First, the editing efficiency of designed sgRNAs was tested in fibroblast cells using the T7E assay and Sanger sequencing. The most effective sgRNA was selected to generate clonal lines of BLG-edited cells. Analysis of 15 single-cell clones, through TA cloning and Sanger sequencing, revealed that 7 clones exhibited bi-allelic (-/-) heterozygous, bi-allelic (-/-) homozygous, and mono-allelic (-/+) disruptions in BLG. Bioinformatics prediction analysis confirmed that non-multiple-of-3 edited nucleotide cell clones have frame shifts and early truncation of BLG protein, while multiple-of-3 edited nucleotides resulted in slightly disoriented protein structures. Somatic cell nuclear transfer (SCNT) method was used to produce blastocyst-stage embryos that have similar developmental rates and quality with wild-type embryos. This study demonstrated the successful bi-allelic editing (-/-) of BLG in buffalo cells through CRISPR/Cas, followed by the production of BLG-edited blastocyst stage embryos using SCNT. With CRISPR and SCNT methods described herein, our long-term goal is to generate gene-edited buffaloes with BLG-free milk.


Assuntos
Búfalos , Sistemas CRISPR-Cas , Edição de Genes , Lactoglobulinas , Animais , Lactoglobulinas/genética , Búfalos/genética , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas/genética , Leite/metabolismo , Fibroblastos/metabolismo
12.
Trends Cancer ; 10(3): 182-184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290969

RESUMO

Cancer remains a leading cause of morbidity and mortality, and a paradigm shift is needed to fundamentally revisit drug development efforts. Pigs share close similarities to humans and may serve as an alternative model. Recently, a transgenic 'Oncopig' line has been generated to induce solid tumors with organ specificity, opening the potential of Oncopigs as a platform for developing novel therapeutic regimens.


Assuntos
Neoplasias , Animais , Suínos , Humanos , Modelos Animais de Doenças , Animais Geneticamente Modificados , Neoplasias/tratamento farmacológico , Neoplasias/genética
13.
World J Oncol ; 15(2): 149-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545477

RESUMO

Pigs are playing an increasingly vital role as translational biomedical models for studying human pathophysiology. The annotation of the pig genome was a huge step forward in translatability of pigs as a biomedical model for various human diseases. Similarities between humans and pigs in terms of anatomy, physiology, genetics, and immunology have allowed pigs to become a comprehensive preclinical model for human diseases. With a diverse range, from craniofacial and ophthalmology to reproduction, wound healing, musculoskeletal, and cancer, pigs have provided a seminal understanding of human pathophysiology. This review focuses on the current research using pigs as preclinical models for cancer research and highlights the strengths and opportunities for studying various human cancers.

14.
CRISPR J ; 7(1): 12-28, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353617

RESUMO

Disease resistance genes in livestock provide health benefits to animals and opportunities for farmers to meet the growing demand for affordable, high-quality protein. Previously, researchers used gene editing to modify the porcine CD163 gene and demonstrated resistance to a harmful virus that causes porcine reproductive and respiratory syndrome (PRRS). To maximize potential benefits, this disease resistance trait needs to be present in commercially relevant breeding populations for multiplication and distribution of pigs. Toward this goal, a first-of-its-kind, scaled gene editing program was established to introduce a single modified CD163 allele into four genetically diverse, elite porcine lines. This effort produced healthy pigs that resisted PRRS virus infection as determined by macrophage and animal challenges. This founder population will be used for additional disease and trait testing, multiplication, and commercial distribution upon regulatory approval. Applying CRISPR-Cas to eliminate a viral disease represents a major step toward improving animal health.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Sistemas CRISPR-Cas/genética , Resistência à Doença/genética , Edição de Genes , Gado
15.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645779

RESUMO

The uterine epithelium is composed of a single layer of hormone responsive polarized epithelial cells that line the lumen and form tubular glands. Endometrial epithelial organoids (EEO) can be generated from uterine epithelia and recapitulate cell composition and hormone responses in vitro . As such, the development of EEO represents a major advance for facilitating mechanistic studies in vitro . However, a major limitation for the use of EEO cultured in basement membrane extract and other hydrogels is the inner location of apical membrane, thereby hindering direct access to the apical surface of the epithelium to study interactions with the embryo or infectious agents such as viruses and bacteria. Here, a straightforward strategy was developed that successfully reverses the polarity of EEO. The result is an apical-out organoid that preserves a distinct apical-basolateral orientation and remains responsive to ovarian steroid hormones. Our investigations highlight the utility of polarity-reversed EEO to study interactions with E. coli and blastocysts. This method of generating apical-out EEO lays the foundation for developing new in vitro functional assays, particularly regarding epithelial interactions with embryos during pregnancy or other luminal constituents in a pathological or diseased state.

16.
Front Genome Ed ; 5: 1256451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694158

RESUMO

Recent advances in CRISPR-Cas genome editing technology have been instrumental in improving the efficiency to produce genetically modified animal models. In this study we have combined four very promising approaches to come up with a highly effective pipeline to produce knock-in mouse and rat models. The four combined methods include: AAV-mediated DNA delivery, single-stranded DNA donor templates, 2-cell embryo modification, and CRISPR-Cas ribonucleoprotein (RNP) electroporation. Using this new combined approach, we were able to produce successfully targeted knock-in rat models containing either Cre or Flp recombinase sequences with knock-in efficiencies over 90%. Furthermore, we were able to produce a knock-in mouse model containing a Cre recombinase targeted insertion with over 50% knock-in efficiency directly comparing efficiencies to other commonly used approaches. Our modified AAV-mediated DNA delivery with 2-cell embryo CRISPR-Cas9 RNP electroporation technique has proven to be highly effective for generating both knock-in mouse and knock-in rat models.

17.
Front Genome Ed ; 5: 1320180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38883409

RESUMO

Influenza A virus (IAV) infection is initiated by hemagglutinin (HA), a glycoprotein exposed on the virion's lipid envelope that undergoes cleavage by host cell proteases to ensure membrane fusion, entry into the host cells, and completion of the viral cycle. Transmembrane protease serine S1 member 2 (TMPRSS2) is a host transmembrane protease expressed throughout the porcine airway epithelium and is purported to play a major role in the HA cleavage process, thereby influencing viral pathogenicity and tissue tropism. Pigs are natural hosts of IAV and IAV disease causes substantial economic impact on the pork industry worldwide. Previous studies in mice demonstrated that knocking out expression of TMPRSS2 gene was safe and inhibited the spread of IAV after experimental challenge. Therefore, we hypothesized that knockout of TMPRSS2 will prevent IAV infectivity in the swine model. We investigated this hypothesis by comparing pathogenesis of an H1N1pdm09 virus challenge in wildtype (WT) control and in TMPRSS2 knockout (TMPRSS2 -/-) pigs. We demonstrated that TMPRSS2 was expressed in the respiratory tract in WT pigs with and without IAV infection. No differences in nasal viral shedding and lung lavage viral titers were observed between WT and TMPRSS2 -/- pigs. However, the TMPRSS2 -/- pig group had significantly less lung lesions and significant reductions in antiviral and proinflammatory cytokines in the lung. The virus titer results in our direct challenge model contradict prior studies in the murine animal model, but the reduced lung lesions and cytokine profile suggest a possible role for TMPRSS2 in the proinflammatory antiviral response. Further research is warranted to investigate the role of TMPRSS2 in swine IAV infection and disease.

18.
CABI Agric Biosci ; 3(1): 41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755158

RESUMO

Genetic modification of animals via selective breeding is the basis for modern agriculture. The current breeding paradigm however has limitations, chief among them is the requirement for the beneficial trait to exist within the population. Desirable alleles in geographically isolated breeds, or breeds selected for a different conformation and commercial application, and more importantly animals from different genera or species cannot be introgressed into the population via selective breeding. Additionally, linkage disequilibrium results in low heritability and necessitates breeding over successive generations to fix a beneficial trait within a population. Given the need to sustainably improve animal production to feed an anticipated 9 billion global population by 2030 against a backdrop of infectious diseases and a looming threat from climate change, there is a pressing need for responsive, precise, and agile breeding strategies. The availability of genome editing tools that allow for the introduction of precise genetic modification at a single nucleotide resolution, while also facilitating large transgene integration in the target population, offers a solution. Concordant with the developments in genomic sequencing approaches, progress among germline editing efforts is expected to reach feverish pace. The current manuscript reviews past and current developments in germline engineering in pigs, and the many advantages they confer for advancing animal agriculture.

19.
Front Cell Dev Biol ; 10: 1059710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438568

RESUMO

Fibroblasts are the common cell type in the connective tissue-the most abundant tissue type in the body. Fibroblasts are widely used for cell culture, for the generation of induced pluripotent stem cells (iPSCs), and as nuclear donors for somatic cell nuclear transfer (SCNT). We report for the first time, the derivation of embryonic fibroblasts (EFs) from porcine embryonic outgrowths, which share similarities in morphology, culture characteristics, molecular markers, and transcriptional profile to fetal fibroblasts (FFs). We demonstrated the efficient use of EFs as nuclear donors in SCNT, for enhanced post-blastocyst development, implantation, and pregnancy outcomes. We further validated EFs as a source for CRISPR/Cas genome editing with overall editing frequencies comparable to that of FFs. Taken together, we established an alternative and efficient pipeline for genome editing and for the generation of genetically engineered animals.

20.
Stem Cell Reports ; 16(1): 212-223, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33338433

RESUMO

Most of our current knowledge regarding early lineage specification and embryo-derived stem cells comes from studies in rodent models. However, key gaps remain in our understanding of these developmental processes from nonrodent species. Here, we report the detailed characterization of pig extraembryonic endoderm (pXEN) cells, which can be reliably and reproducibly generated from primitive endoderm (PrE) of blastocyst. Highly expandable pXEN cells express canonical PrE markers and transcriptionally resemble rodent XENs. The pXEN cells contribute both to extraembryonic tissues including visceral yolk sac as well as embryonic gut when injected into host blastocysts, and generate live offspring when used as a nuclear donor in somatic cell nuclear transfer (SCNT). The pXEN cell lines provide a novel model for studying lineage segregation, as well as a source for genome editing in livestock.


Assuntos
Embrião de Mamíferos/citologia , Endoderma/citologia , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem da Célula , Quimera , Cadeia alfa 1 do Colágeno Tipo I/genética , Embrião de Mamíferos/metabolismo , Endoderma/metabolismo , Edição de Genes , Camundongos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA