Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Can J Infect Dis Med Microbiol ; 2021: 7865405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093925

RESUMO

Neisseria gonorrhoeae (N. gonorrhoeae, gonococci, or GC), the etiologic agent of gonorrhea, is a human-obligate bacterial pathogen. The GC surface contains pili that mediate the adherence to host cells. Studies have shown that GC pili, coded by pilin genes, undergo remarkable changes during human experimental gonorrhea, possibly generated by DNA phase variation during infection. The question that arises is whether the changes in pilins can alter the adherence capacity of N. gonorrhoeae to host cells. In this study, six variants initially isolated from male volunteers infected with one single clone of GC were examined for their adherence patterns with human Chang conjunctiva cells. In this study, we showed that the variants showed distinct adherence patterns to this cell line under light microscopy and scanning electron microscopy. Moreover, two reisolates showed higher adherence capacities than that of the input strain. The results provide an additional example as to how the pilus variation may play a role in the pathogenesis of N. gonorrhoeae.

2.
Front Immunol ; 13: 791799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401532

RESUMO

Yersinia pestis, the cause of plague, is a newly evolved Gram-negative bacterium. Through the acquisition of the plasminogen activator (Pla), Y. pestis gained the means to rapidly disseminate throughout its mammalian hosts. It was suggested that Y. pestis utilizes Pla to interact with the DEC-205 (CD205) receptor on antigen-presenting cells (APCs) to initiate host dissemination and infection. However, the evolutionary origin of Pla has not been fully elucidated. The PgtE enzyme of Salmonella enterica, involved in host dissemination, shows sequence similarity with the Y. pestis Pla. In this study, we demonstrated that both Escherichia coli K-12 and Y. pestis bacteria expressing the PgtE-protein were able to interact with primary alveolar macrophages and DEC-205-transfected CHO cells. The interaction between PgtE-expressing bacteria and DEC-205-expressing transfectants could be inhibited by the application of an anti-DEC-205 antibody. Moreover, PgtE-expressing Y. pestis partially re-gained the ability to promote host dissemination and infection. In conclusion, the DEC-205-PgtE interaction plays a role in promoting the dissemination and infection of Y. pestis, suggesting that Pla and the PgtE of S. enterica might share a common evolutionary origin.


Assuntos
Escherichia coli K12 , Salmonella enterica , Yersinia pestis , Animais , Proteínas de Bactérias/genética , Cricetinae , Cricetulus , Ativadores de Plasminogênio
3.
J Med Microbiol ; 70(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33591245

RESUMO

Introduction. Shigella sonnei, the cause of bacillary dysentery, belongs to Gram-negative enteropathogenic bacteria. S. sonnei contains a 210 kb virulence plasmid that encodes an O-antigen gene cluster of LPSs. However, this virulence plasmid is frequently lost during replication. It is well-documented that after losing the O-antigen and becoming rough strains, the Gram-negative bacteria may express an LPS core on its surface. Previous studies have suggested that by using the LPS core, Gram-negative bacteria can interact with several C-type lectin receptors that are expressed on antigen-presenting cells (APCs).Hypothesis/Gap Statement. S. sonnei by losing the virulence plasmid may hijack APCs via the interactions of LPS-CD209/CD207.Aim. This study aimed to investigate if the S. sonnei rough strain, by losing the virulence plasmid, interacted with APCs that express C-type lectins of human CD207, human CD209a and mouse CD209b.Methodology. SDS-PAGE silver staining was used to examine the O-antigen expression of S. sonnei WT and its rough strain. Invasion assays and inhibition assays were used to examine the ability of S. sonnei WT and its rough strain to invade APCs and investigate whether CD209 and CD207 are receptors for phagocytosis of rough S. sonnei. Animal assays were used to observe the dissemination of S. sonnei.Results. S. sonnei did not express O-antigens after losing the virulence plasmid. The S. sonnei rough strain invades with APCs, including human dendritic cells (DCs) and mouse macrophages. CD209 and CD207 are receptors for phagocytosis of rough S. sonnei. Expression of the O-antigen reduces the ability of the S. sonnei rough strain to be disseminated to mesenteric lymph nodes and spleens.Conclusion. This work demonstrated that S. sonnei rough strains - by losing the virulence plasmid - invaded APCs through interactions with CD209 and CD207 receptors.


Assuntos
Antígenos CD/imunologia , Moléculas de Adesão Celular/imunologia , Disenteria Bacilar/microbiologia , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia , Antígenos O , Plasmídeos , Receptores de Superfície Celular/imunologia , Shigella sonnei/patogenicidade , Virulência/genética , Animais , Células CHO , Cricetulus , Células Dendríticas/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/microbiologia , Camundongos , Antígenos O/genética , Antígenos O/metabolismo , Shigella sonnei/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA