Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 91(8): e0004223, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37404186

RESUMO

Patients receiving the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib have an increased likelihood of fungal infections. The objectives of this study were to determine if Cryptococcus neoformans infection severity was isolate dependent with BTK inhibition and whether blocking BTK impacted infection severity in a mouse model. We compared four clinical isolates from patients on ibrutinib to virulent (H99) and avirulent (A1-35-8) reference strains. BTK knockout (KO) and wild-type (WT) C57 mice and WT CD1 mice were infected by intranasal (i.n.), oropharyngeal aspiration (OPA), and intravenous (i.v.) routes. Infection severity was assessed by survival and fungal burden (CFU per gram of tissue). Ibrutinib (25 mg/kg) or vehicle was administered daily through intraperitoneal injections. In the BTK KO model, no isolate-dependent effect on fungal burden was observed, and infection severity was not significantly different from that of the WT with i.n., OPA, and i.v. routes. Ibrutinib treatment did not impact infection severity. However, when the four clinical isolates were compared to H99, two of these isolates were less virulent, with significantly longer survival and reduced rates of brain infection. In conclusion, C. neoformans infection severity in the BTK KO model does not appear to be isolate dependent. BTK KO and ibrutinib treatment did not result in significantly different infection severities. However, based on repeated clinical observations of increased susceptibility to fungal infections with BTK inhibitor therapy, further work is needed to optimize a mouse model with BTK inhibition to better understand the role that this pathway plays in susceptibility to C. neoformans infection.


Assuntos
Criptococose , Camundongos , Animais , Tirosina Quinase da Agamaglobulinemia/metabolismo , Criptococose/tratamento farmacológico , Encéfalo/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Antimicrob Agents Chemother ; 67(10): e0081823, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37728934

RESUMO

Cryptococcal meningoencephalitis (CM) is a devastating fungal disease with high morbidity and mortality. The current regimen that is standard-of-care involves a combination of three different drugs administered for up to one year. There is a critical need for new therapies due to both toxicity and inadequate fungicidal activity of the currently available antifungal drugs. ATI-2307 is a novel aryl amidine that disrupts the mitochondrial membrane potential and inhibits the respiratory chain complexes of fungi-it thus represents a new mechanism for direct antifungal action. Furthermore, ATI-2307 selectively targets fungal mitochondria via a fungal-specific transporter that is not present in mammalian cells. It has very potent in vitro anticryptococcal activity. In this study, the efficacy of ATI-2307 was tested in a rabbit model of CM. ATI-2307 demonstrated significant fungicidal activity at dosages between 1 and 2 mg/kg/d, and these results were superior to fluconazole and similar to amphotericin B treatment. When ATI-2307 was combined with fluconazole, the antifungal effect was greater than either therapy alone. While ATI-2307 has potent anticryptococcal activity in the subarachnoid space, its ability to reduce yeasts in the brain parenchyma was relatively less over the same study period. This new drug, with its unique mechanism of fungicidal action and ability to positively interact with an azole, has demonstrated sufficient anticryptococcal potential in this experimental setting to be further evaluated in clinical studies.


Assuntos
Cryptococcus neoformans , Meningite Criptocócica , Meningoencefalite , Animais , Coelhos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/microbiologia , Meningoencefalite/tratamento farmacológico , Meningoencefalite/microbiologia , Mamíferos
3.
Med Mycol ; 61(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952096

RESUMO

Cryptococcal meningitis is the second most common cause of death in people living with HIV/AIDS, yet we have a limited understanding of how cryptococcal isolates change over the course of infection. Cryptococcal infections are environmentally acquired, and the genetic diversity of these infecting isolates can also be geographically linked. Here, we employ whole genome sequences for 372 clinical Cryptococcus isolates from 341 patients with HIV-associated cryptococcal meningitis obtained via a large clinical trial, across both Malawi and Cameroon, to enable population genetic comparisons of isolates between countries. We see that isolates from Cameroon are highly clonal, when compared to those from Malawi, with differential rates of disruptive variants in genes with roles in DNA binding and energy use. For a subset of patients (22) from Cameroon, we leverage longitudinal sampling, with samples taken at days 7 and 14 post-enrollment, to interrogate the genetic changes that arise over the course of infection, and the genetic diversity of isolates within patients. We see disruptive variants arising over the course of infection in several genes, including the phagocytosis-regulating transcription factor GAT204. In addition, in 13% of patients sampled longitudinally, we see evidence for mixed infections. This approach identifies geographically linked genetic variation, signatures of microevolution, and evidence for mixed infections across a clinical cohort of patients affected by cryptococcal meningitis in Central Africa.


Cryptococcal meningitis, caused by Cryptococcus, results in approximately half a million deaths per year globally. We compare clinical Cryptococcus samples from Cameroon and Malawi to explore the genetic diversity of these isolates. We find instances of mixed-strain infections and identify genetic variants arising in Cryptococcus over disease.


Assuntos
Síndrome da Imunodeficiência Adquirida , Coinfecção , Cryptococcus neoformans , Cryptococcus , Infecções por HIV , Meningite Criptocócica , Humanos , Meningite Criptocócica/epidemiologia , Meningite Criptocócica/veterinária , Cryptococcus neoformans/genética , Cryptococcus/genética , Camarões/epidemiologia , Coinfecção/veterinária , Síndrome da Imunodeficiência Adquirida/complicações , Síndrome da Imunodeficiência Adquirida/veterinária , Variação Genética , Infecções por HIV/complicações , Infecções por HIV/veterinária
4.
Genome Res ; 27(7): 1207-1219, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28611159

RESUMO

Cryptococcus neoformans is an opportunistic fungal pathogen that causes approximately 625,000 deaths per year from nervous system infections. Here, we leveraged a unique, genetically diverse population of C. neoformans from sub-Saharan Africa, commonly isolated from mopane trees, to determine how selective pressures in the environment coincidentally adapted C. neoformans for human virulence. Genome sequencing and phylogenetic analysis of 387 isolates, representing the global VNI and African VNB lineages, highlighted a deep, nonrecombining split in VNB (herein, VNBI and VNBII). VNBII was enriched for clinical samples relative to VNBI, while phenotypic profiling of 183 isolates demonstrated that VNBI isolates were significantly more resistant to oxidative stress and more heavily melanized than VNBII isolates. Lack of melanization in both lineages was associated with loss-of-function mutations in the BZP4 transcription factor. A genome-wide association study across all VNB isolates revealed sequence differences between clinical and environmental isolates in virulence factors and stress response genes. Inositol transporters and catabolism genes, which process sugars present in plants and the human nervous system, were identified as targets of selection in all three lineages. Further phylogenetic and population genomic analyses revealed extensive loss of genetic diversity in VNBI, suggestive of a history of population bottlenecks, along with unique evolutionary trajectories for mating type loci. These data highlight the complex evolutionary interplay between adaptation to natural environments and opportunistic infections, and that selection on specific pathways may predispose isolates to human virulence.


Assuntos
Criptococose/genética , Cryptococcus neoformans , Evolução Molecular , Proteínas Fúngicas/genética , Fatores de Transcrição/genética , Fatores de Virulência/genética , África Subsaariana/epidemiologia , Criptococose/mortalidade , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Genética Populacional , Estudo de Associação Genômica Ampla , Humanos
6.
Med Mycol ; 58(8): 1149-1161, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32196550

RESUMO

We previously observed a substantial burden of cryptococcal meningitis in Vietnam atypically arising in individuals who are uninfected with human immunodeficiency virus (HIV). This disease was associated with a single genotype of Cryptococcus neoformans (sequence type [ST]5), which was significantly less common in HIV-infected individuals. Aiming to compare the phenotypic characteristics of ST5 and non-ST5 C. neoformans, we selected 30 representative Vietnamese isolates and compared their in vitro pathogenic potential and in vivo virulence. ST5 and non-ST5 organisms exhibited comparable characteristics with respect to in vitro virulence markers including melanin production, replication at 37°C, and growth in cerebrospinal fluid. However, the ST5 isolates had significantly increased variability in cellular and capsular sizing compared with non-ST5 organisms (P < .001). Counterintuitively, mice infected with ST5 isolates had significantly longer survival with lower fungal burdens at day 7 than non-ST5 isolates. Notably, ST5 isolates induced significantly greater initial inflammatory responses than non-ST5 strains, measured by TNF-α concentrations (P < .001). Despite being generally less virulent in the mouse model, we hypothesize that the significant within strain variation seen in ST5 isolates in the tested phenotypes may represent an evolutionary advantage enabling adaptation to novel niches including apparently immunocompetent human hosts.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Cryptococcus neoformans/patogenicidade , Meningite Criptocócica/microbiologia , Infecções Oportunistas Relacionadas com a AIDS/patologia , Animais , Contagem de Colônia Microbiana , Cryptococcus neoformans/genética , Citocinas/metabolismo , Feminino , Cápsulas Fúngicas/patologia , Genótipo , Humanos , Imunocompetência , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Masculino , Meningite Criptocócica/patologia , Camundongos , Fenótipo , Vietnã/epidemiologia , Virulência
7.
Proc Natl Acad Sci U S A ; 113(26): 7148-53, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27307435

RESUMO

Trehalose is a disaccharide essential for the survival and virulence of pathogenic fungi. The biosynthesis of trehalose requires trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. Here, we report the structures of the N-terminal domain of Tps2 (Tps2NTD) from Candida albicans, a transition-state complex of the Tps2 C-terminal trehalose-6-phosphate phosphatase domain (Tps2PD) bound to BeF3 and trehalose, and catalytically dead Tps2PD(D24N) from Cryptococcus neoformans bound to trehalose-6-phosphate (T6P). The Tps2NTD closely resembles the structure of Tps1 but lacks any catalytic activity. The Tps2PD-BeF3-trehalose and Tps2PD(D24N)-T6P complex structures reveal a "closed" conformation that is effected by extensive interactions between each trehalose hydroxyl group and residues of the cap and core domains of the protein, thereby providing exquisite substrate specificity. Disruption of any of the direct substrate-protein residue interactions leads to significant or complete loss of phosphatase activity. Notably, the Tps2PD-BeF3-trehalose complex structure captures an aspartyl-BeF3 covalent adduct, which closely mimics the proposed aspartyl-phosphate intermediate of the phosphatase catalytic cycle. Structures of substrate-free Tps2PD reveal an "open" conformation whereby the cap and core domains separate and visualize the striking conformational changes effected by substrate binding and product release and the role of two hinge regions centered at approximately residues 102-103 and 184-188. Significantly, tps2Δ, tps2NTDΔ, and tps2D705N strains are unable to grow at elevated temperatures. Combined, these studies provide a deeper understanding of the substrate recognition and catalytic mechanism of Tps2 and provide a structural basis for the future design of novel antifungal compounds against a target found in three major fungal pathogens.


Assuntos
Candida albicans/enzimologia , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/química , Monoéster Fosfórico Hidrolases/química , Biocatálise , Candida albicans/química , Candida albicans/genética , Candida albicans/metabolismo , Cryptococcus neoformans/química , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Especificidade por Substrato , Fosfatos Açúcares/química , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/química , Trealose/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-29891599

RESUMO

Cryptococcal meningitis (CM), caused primarily by Cryptococcus neoformans, is uniformly fatal if not treated. Treatment options are limited, especially in resource-poor geographical regions, and mortality rates remain high despite current therapies. Here we evaluated the in vitro and in vivo activity of several compounds, including APX001A and its prodrug, APX001, currently in clinical development for the treatment of invasive fungal infections. These compounds target the conserved Gwt1 enzyme that is required for the localization of glycosylphosphatidylinositol (GPI)-anchored cell wall mannoproteins in fungi. The Gwt1 inhibitors had low MIC values, ranging from 0.004 µg/ml to 0.5 µg/ml, against both C. neoformans and C. gattii APX001A and APX2020 demonstrated in vitro synergy with fluconazole (fractional inhibitory concentration index, 0.37 for both). In a CM model, APX001 and fluconazole each alone reduced the fungal burden in brain tissue (0.78 and 1.04 log10 CFU/g, respectively), whereas the combination resulted in a reduction of 3.52 log10 CFU/g brain tissue. Efficacy, as measured by a reduction in the brain and lung tissue fungal burden, was also observed for another Gwt1 inhibitor prodrug, APX2096, where dose-dependent reductions in the fungal burden ranged from 5.91 to 1.79 log10 CFU/g lung tissue and from 7.00 and 0.92 log10 CFU/g brain tissue, representing the nearly complete or complete sterilization of lung and brain tissue at the higher doses. These data support the further clinical evaluation of this new class of antifungal agents for the treatment of CM.


Assuntos
Amidoidrolases/antagonistas & inibidores , Aminopiridinas/farmacologia , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Proteínas Fúngicas/antagonistas & inibidores , Isoxazóis/farmacologia , Meningite Criptocócica/tratamento farmacológico , Organofosfatos/farmacologia , Pró-Fármacos/farmacologia , Administração Oral , Amidoidrolases/genética , Amidoidrolases/metabolismo , Aminopiridinas/síntese química , Aminopiridinas/farmacocinética , Animais , Antifúngicos/síntese química , Antifúngicos/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/microbiologia , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus gattii/enzimologia , Cryptococcus gattii/genética , Cryptococcus gattii/crescimento & desenvolvimento , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Sinergismo Farmacológico , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Injeções Intraperitoneais , Isoxazóis/síntese química , Isoxazóis/farmacocinética , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Masculino , Meningite Criptocócica/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Organofosfatos/síntese química , Organofosfatos/farmacocinética , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética
9.
Eukaryot Cell ; 12(11): 1439-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23975889

RESUMO

Cryptococcus neoformans and C. gattii cause meningoencephalitis and are an increasing human health threat. These pathogenic Cryptococcus species are neurotropic and persist in the cerebrospinal fluid (CSF) of the mammalian host during infection. In order to survive in the host, pathogenic fungi must procure nutrients, such as carbon and nitrogen, from the CSF. To enhance our understanding of nutrient acquisition during central nervous system infection by Cryptococcus species, we examined the utilization of nitrogen sources available in CSF. We screened for the growth and capsule production of 817 global environmental and clinical isolates on various sources of nitrogen. Both environmental and clinical strains grew robustly on uric acid, Casamino Acids, creatinine, and asparagine as sole nitrogen sources. Urea induced the greatest magnitude of capsule induction. This induction was greater in Cryptococcus gattii than in C. neoformans. We confirmed the ability of nonpreferred nitrogen sources to increase capsule production in pathogenic species of Cryptococcus. Since urea is metabolized to ammonia and CO(2) (a known signal for capsule induction), we examined urea metabolism mutants for their transcriptional response to urea regarding capsule production. The transcriptional profile of C. neoformans under urea-supplemented conditions revealed both similar and unique responses to other capsule-inducing conditions, including both intra- and extracellular urea utilization. As one of the most abundant nitrogen sources in the CSF, the ability of Cryptococcus to import urea and induce capsule production may substantially aid this yeast's survival and propagation in the host.


Assuntos
Cryptococcus/metabolismo , Cápsulas Fúngicas/metabolismo , Nitrogênio/metabolismo , Aminoácidos/metabolismo , Asparagina/metabolismo , Creatinina/metabolismo , Cryptococcus/citologia , Cryptococcus/genética , Mutação , Ureia/metabolismo , Ácido Úrico/metabolismo
10.
Methods Mol Biol ; 2775: 59-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758311

RESUMO

Biolistic transformation of Cryptococcus neoformans is used as a molecular tool to genetically alter or delete targeted genes. The DNA is introduced into the yeast on DNA-coated gold beads by a helium shock wave produced using a biolistic particle system. The procedure often involves insertion of a dominant selectable marker into the desired site by homologous recombination. To increase the likelihood of homologous recombination, large fragments of overlapping DNA are used. The two most used dominant selectable markers are nourseothricin and Geneticin. With the need to generate multiple gene deletions in the same strain, there are recyclable marker systems, such as the bacteriophage P1 Cre-loxP system or CRISPR that provide additional useful molecular tools. While newer strategies exist to generate deletions and introduce markers and other gene modifications, biolistic transformation has remained a viable tool to facilitate the construction of genetically modified yeast strains. This chapter provides a working protocol on how to delete and restore a gene in C. neoformans.


Assuntos
Biolística , Cryptococcus neoformans , Transformação Genética , Cryptococcus neoformans/genética , Biolística/métodos , Recombinação Homóloga , Deleção de Genes
11.
mBio ; 15(5): e0064924, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38619236

RESUMO

Invasive fungal infections are a significant public health concern, with mortality rates ranging from 20% to 85% despite current treatments. Therefore, we examined whether a ketogenic diet could serve as a successful treatment intervention in murine models of Cryptococcus neoformans and Candida albicans infection in combination with fluconazole-a low-cost, readily available antifungal therapy. The ketogenic diet is a high-fat, low-carbohydrate diet that promotes fatty acid oxidation as an alternative to glycolysis through the production of ketone bodies. In this series of experiments, mice fed a ketogenic diet prior to infection with C. neoformans and treated with fluconazole had a significant decrease in fungal burden in both the brain (mean 2.66 ± 0.289 log10 reduction) and lung (mean 1.72 ± 0.399 log10 reduction) compared to fluconazole treatment on a conventional diet. During C. albicans infection, kidney fungal burden of mice in the keto-fluconazole combination group was significantly decreased compared to fluconazole alone (2.37 ± 0.770 log10-reduction). Along with higher concentrations of fluconazole in the plasma and brain tissue, fluconazole efficacy was maximized at a significantly lower concentration on a keto diet compared to a conventional diet, indicating a dramatic effect on fluconazole pharmacodynamics. Our findings indicate that a ketogenic diet potentiates the effect of fluconazole at multiple body sites during both C. neoformans and C. albicans infection and could have practical and promising treatment implications.IMPORTANCEInvasive fungal infections cause over 2.5 million deaths per year around the world. Treatments for fungal infections are limited, and there is a significant need to develop strategies to enhance antifungal efficacy, combat antifungal resistance, and mitigate treatment side effects. We determined that a high-fat, low-carbohydrate ketogenic diet significantly potentiated the therapeutic effect of fluconazole, which resulted in a substantial decrease in tissue fungal burden of both C. neoformans and C. albicans in experimental animal models. We believe this work is the first of its kind to demonstrate that diet can dramatically influence the treatment of fungal infections. These results highlight a novel strategy of antifungal drug enhancement and emphasize the need for future investigation into dietary effects on antifungal drug activity.


Assuntos
Antifúngicos , Candida albicans , Candidíase , Criptococose , Cryptococcus neoformans , Dieta Cetogênica , Modelos Animais de Doenças , Fluconazol , Animais , Fluconazol/farmacologia , Fluconazol/administração & dosagem , Camundongos , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Candidíase/dietoterapia , Candidíase/microbiologia , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Criptococose/dietoterapia , Criptococose/prevenção & controle , Feminino , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/efeitos dos fármacos
12.
J Fungi (Basel) ; 8(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35628686

RESUMO

Many aspects of the host response to invasive cryptococcal infections remain poorly understood. In order to explore the pathobiology of infection with common clinical strains, we infected BALB/cJ mice with Cryptococcus neoformans, Cryptococcus gattii, or sham control, and assayed host transcriptomic responses in peripheral blood. Infection with C. neoformans resulted in markedly greater fungal burden in the CNS than C. gattii, as well as slightly higher fungal burden in the lungs. A total of 389 genes were significantly differentially expressed in response to C. neoformans infection, which mainly clustered into pathways driving immune function, including complement activation and TH2-skewed immune responses. C. neoformans infection demonstrated dramatic up-regulation of complement-driven genes and greater up-regulation of alternatively activated macrophage activity than seen with C gattii. A 27-gene classifier was built, capable of distinguishing cryptococcal infection from animals with bacterial infection due to Staphylococcus aureus with 94% sensitivity and 89% specificity. Top genes from the murine classifiers were also differentially expressed in human PBMCs following infection, suggesting cross-species relevance of these findings. The host response, as manifested in transcriptional profiles, informs our understanding of the pathophysiology of cryptococcal infection and demonstrates promise for contributing to development of novel diagnostic approaches.

13.
mBio ; 13(6): e0234722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36222509

RESUMO

Cryptococcal Meningitis (CM) is uniformly fatal if not treated, and treatment options are limited. We previously reported on the activity of APX2096, the prodrug of the novel Gwt1 inhibitor APX2039, in a mouse model of CM. Here, we investigated the efficacy of APX2039 in mouse and rabbit models of CM. In the mouse model, the controls had a mean lung fungal burden of 5.95 log10 CFU/g, whereas those in the fluconazole-, amphotericin B-, and APX2039-treated mice were 3.56, 4.59, and 1.50 log10 CFU/g, respectively. In the brain, the control mean fungal burden was 7.97 log10 CFU/g, while the burdens were 4.64, 7.16, and 1.44 log10 CFU/g for treatment with fluconazole, amphotericin B, and APX2039, respectively. In the rabbit model of CM, the oral administration of APX2039 at 50 mg/kg of body weight twice a day (BID) resulted in a rapid decrease in the cerebrospinal fluid (CSF) fungal burden, and the burden was below the limit of detection by day 10 postinfection. The effective fungicidal activity (EFA) was -0.66 log10 CFU/mL/day, decreasing from an average of 4.75 log10 CFU/mL to 0 CFU/mL, over 8 days of therapy, comparing favorably with good clinical outcomes in humans associated with reductions of the CSF fungal burden of -0.4 log10 CFU/mL/day, and, remarkably, 2-fold the EFA of amphotericin B deoxycholate in this model (-0.33 log10 CFU/mL/day). A total drug exposure of the area under the concentration-time curve from 0 to 24 h (AUC0-24) of 25 to 50 mg · h/L of APX2039 resulted in near-maximal antifungal activity. These data support the further preclinical and clinical evaluation of APX2039 as a new oral fungicidal monotherapy for the treatment of CM. IMPORTANCE Cryptococcal meningitis (CM) is a fungal disease with significant global morbidity and mortality. The gepix Gwt1 inhibitors are a new class of antifungal drugs. Here, we demonstrated the efficacy of APX2039, the second member of the gepix class, in rabbit and mouse models of cryptococcal meningitis. We also analyzed the drug levels in the blood and cerebrospinal fluid in the highly predictive rabbit model and built a mathematical model to describe the behavior of the drug with respect to the elimination of the fungal pathogen. We demonstrated that the oral administration of APX2039 resulted in a rapid decrease in the CSF fungal burden, with an effective fungicidal activity of -0.66 log10 CFU/mL/day, comparing favorably with good clinical outcomes in humans associated with reductions of -0.4 log10 CFU/mL/day. The drug APX2039 had good penetration of the central nervous system and is an excellent candidate for future clinical testing in humans for the treatment of CM.


Assuntos
Anfotericina B , Meningite Criptocócica , Humanos , Coelhos , Animais , Camundongos , Anfotericina B/uso terapêutico , Meningite Criptocócica/microbiologia , Antifúngicos/farmacologia , Fluconazol/uso terapêutico , Quimioterapia Combinada
14.
mBio ; 13(6): e0262622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36354332

RESUMO

Cryptococcus neoformans is the causative agent of cryptococcosis, a disease with poor patient outcomes that accounts for approximately 180,000 deaths each year. Patient outcomes may be impacted by the underlying genetics of the infecting isolate; however, our current understanding of how genetic diversity contributes to clinical outcomes is limited. Here, we leverage clinical, in vitro growth and genomic data for 284 C. neoformans isolates to identify clinically relevant pathogen variants within a population of clinical isolates from patients with human immunodeficiency virus (HIV)-associated cryptococcosis in Malawi. Through a genome-wide association study (GWAS) approach, we identify variants associated with the fungal burden and the growth rate. We also find both small and large-scale variation, including aneuploidy, associated with alternate growth phenotypes, which may impact the course of infection. Genes impacted by these variants are involved in transcriptional regulation, signal transduction, glycosylation, sugar transport, and glycolysis. We show that growth within the central nervous system (CNS) is reliant upon glycolysis in an animal model and likely impacts patient mortality, as the CNS yeast burden likely modulates patient outcome. Additionally, we find that genes with roles in sugar transport are enriched in regions under selection in specific lineages of this clinical population. Further, we demonstrate that genomic variants in two genes identified by GWAS impact virulence in animal models. Our approach identifies links between the genetic variation in C. neoformans and clinically relevant phenotypes and animal model pathogenesis, thereby shedding light on specific survival mechanisms within the CNS and identifying the pathways involved in yeast persistence. IMPORTANCE Infection outcomes for cryptococcosis, most commonly caused by C. neoformans, are influenced by host immune responses as well as by host and pathogen genetics. Infecting yeast isolates are genetically diverse; however, we lack a deep understanding of how this diversity impacts patient outcomes. To better understand both clinical isolate diversity and how diversity contributes to infection outcomes, we utilize a large collection of clinical C. neoformans samples that were isolated from patients enrolled in a clinical trial across 3 hospitals in Malawi. By combining whole-genome sequence data, clinical data, and in vitro growth data, we utilize genome-wide association approaches to examine the genetic basis of virulence. Genes with significant associations display virulence attributes in both murine and rabbit models, demonstrating that our approach can identify potential links between genetic variants and patho-biologically significant phenotypes.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Animais , Camundongos , Coelhos , Fatores de Virulência/genética , Saccharomyces cerevisiae/genética , Estudo de Associação Genômica Ampla , Modelos Animais de Doenças , Cryptococcus neoformans/genética , Criptococose/microbiologia , Genômica , Açúcares/metabolismo
15.
J Biol Chem ; 285(14): 10832-40, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133945

RESUMO

Yersinia pestis has acquired a variety of complex strategies that enable the bacterium to overcome defenses in different hosts and ensure its survival and successful transmission. A full-genome microarray analysis on Caenorhabditis elegans infected with Y. pestis shows enrichment in genes that are markers of innate immune responses and regulated by a conserved PMK-1/p38 MAPK. Consistent with a role in regulating expression of immune effectors, inhibition of PMK-1/p38 by mutation or RNA interference enhances susceptibility to Y. pestis. Further studies of mosaic animals where PMK-1/p38 is exclusively inhibited or overexpressed in a tissue-specific manner indicate that PMK-1/p38 controls expression of a CUB-like family of immune genes at the cell-autonomous level. Given the conserved nature of PMK-1/p38 MAPK-mediated signaling and innate immune responses, PMK-1/p38 MAPK may play a role in the immune response against Y. pestis in natural hosts.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peste/imunologia , Yersinia pestis/patogenicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Western Blotting , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Citometria de Fluxo , Perfilação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/genética , Análise de Sequência com Séries de Oligonucleotídeos , Peste/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases p38 Ativadas por Mitógeno/genética
16.
mBio ; 12(6): e0231321, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724829

RESUMO

Cryptococcus neoformans is a major human central nervous system (CNS) fungal pathogen causing considerable morbidity and mortality. In this study, we provide the widest view to date of the yeast transcriptome directly from the human subarachnoid space and within cerebrospinal fluid (CSF). We captured yeast transcriptomes from C. neoformans of various genotypes in 31 patients with cryptococcal meningoencephalitis as well as several Cryptococcus gattii infections. Using transcriptome sequencing (RNA-seq) analyses, we compared the in vivo yeast transcriptomes to those from other environmental conditions, including in vitro growth on nutritious media or artificial CSF as well as samples collected from rabbit CSF at two time points. We ranked gene expressions and identified genetic patterns and networks across these diverse isolates that reveal an emphasis on carbon metabolism, fatty acid synthesis, transport, cell wall structure, and stress-related gene functions during growth in CSF. The most highly expressed yeast genes in human CSF included those known to be associated with survival or virulence and highlighted several genes encoding hypothetical proteins. From that group, a gene encoding the CMP1 putative glycoprotein (CNAG_06000) was selected for functional studies. This gene was found to impact the virulence of Cryptococcus in both mice and the CNS rabbit model, in agreement with a recent study also showing a role in virulence. This transcriptional analysis strategy provides a view of regulated yeast genes across genetic backgrounds important for human CNS infection and a relevant resource for the study of cryptococcal genes, pathways, and networks linked to human disease. IMPORTANCE Cryptococcus is the most common fungus causing high-morbidity and -mortality human meningitis. This encapsulated yeast has a unique propensity to travel to the central nervous system to produce disease. In this study, we captured transcriptomes of yeasts directly out of the human cerebrospinal fluid, the most concerning site of infection. By comparing the RNA transcript levels with other conditions, we gained insights into how the basic machinery involved in metabolism and environmental responses enable this fungus to cause disease at this body site. This approach was applied to clinical isolates with diverse genotypes to begin to establish a genotype-agnostic understanding of how the yeast responds to stress. Based on these results, future studies can focus on how these genes and their pathways and networks can be targeted with new therapeutics and possibly classify yeasts with bad infection outcomes.


Assuntos
Criptococose/microbiologia , Cryptococcus neoformans/genética , Meningoencefalite/microbiologia , Animais , Sistema Nervoso Central/microbiologia , Criptococose/líquido cefalorraquidiano , Cryptococcus neoformans/classificação , Cryptococcus neoformans/isolamento & purificação , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genótipo , Humanos , Masculino , Meningoencefalite/diagnóstico , Camundongos , RNA-Seq , Coelhos , Transcriptoma , Virulência
17.
mBio ; 12(2)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906924

RESUMO

Amoeboid predators, such as amoebae, are proposed to select for survival traits in soil microbes such as Cryptococcus neoformans; these traits can also function in animal virulence by defeating phagocytic immune cells, such as macrophages. Consistent with this notion, incubation of various fungal species with amoebae enhanced their virulence, but the mechanisms involved are unknown. In this study, we exposed three strains of C. neoformans (1 clinical and 2 environmental) to predation by Acanthamoeba castellanii for prolonged times and then analyzed surviving colonies phenotypically and genetically. Surviving colonies comprised cells that expressed either pseudohyphal or yeast phenotypes, which demonstrated variable expression of traits associated with virulence, such as capsule size, urease production, and melanization. Phenotypic changes were associated with aneuploidy and DNA sequence mutations in some amoeba-passaged isolates, but not in others. Mutations in the gene encoding the oligopeptide transporter (CNAG_03013; OPT1) were observed among amoeba-passaged isolates from each of the three strains. Isolates derived from environmental strains gained the capacity for enhanced macrophage toxicity after amoeba selection and carried mutations on the CNAG_00570 gene encoding Pkr1 (AMP-dependent protein kinase regulator) but manifested reduced virulence in mice because they elicited more effective fungal-clearing immune responses. Our results indicate that C. neoformans survival under constant amoeba predation involves the generation of strains expressing pleiotropic phenotypic and genetic changes. Given the myriad potential predators in soils, the diversity observed among amoeba-selected strains suggests a bet-hedging strategy whereby variant diversity increases the likelihood that some will survive predation.IMPORTANCECryptococcus neoformans is a ubiquitous environmental fungus that is also a leading cause of fatal fungal infection in humans, especially among immunocompromised patients. A major question in the field is how an environmental yeast such as C. neoformans becomes a human pathogen when it has no need for an animal host in its life cycle. Previous studies showed that C. neoformans increases its pathogenicity after interacting with its environmental predator amoebae. Amoebae, like macrophages, are phagocytic cells that are considered an environmental training ground for pathogens to resist macrophages, but the mechanism by which C. neoformans changes its virulence through interactions with protozoa is unknown. Our study indicates that fungal survival in the face of amoeba predation is associated with the emergence of pleiotropic phenotypic and genomic changes that increase the chance of fungal survival, with this diversity suggesting a bet-hedging strategy to ensure that some forms survive.


Assuntos
Acanthamoeba castellanii/fisiologia , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Fagocitose , Acanthamoeba castellanii/microbiologia , Animais , Criptococose/imunologia , Cryptococcus neoformans/classificação , Cryptococcus neoformans/genética , Citocinas/imunologia , Feminino , Humanos , Larva/microbiologia , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Mariposas/microbiologia , Fagócitos/microbiologia , Fenótipo , Virulência
18.
Front Cell Infect Microbiol ; 11: 642658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277464

RESUMO

Cryptococcosis is an infectious disease of worldwide distribution, caused by encapsulated yeasts belonging to the phylum Basidiomycota. The genus Cryptococcus includes several species distributed around the world. The C. gattii/neoformans species complex is largely responsible for most cases of cryptococcosis. However, clinical series have been published of infections caused by Papiliotrema (Cryptococcus) laurentii and Naganishia albida (Cryptococcus albidus), among other related genera. Here, we examined the pathogenic potential and antifungal susceptibility of C. gattii/neoformans species complex (clades I and II) and related genera (Papiliotrema and Naganishia) isolated from environmental and clinical samples. P. laurentii (clade III), N. liquefasciens/N. albidosimilis (clade IV); and N. adeliensis/N. albida (clade V) strains produced higher levels of phospholipase and hemolysins, whereas the C. gattii/neoformans species complex strains (clades I and II) had markedly thicker capsules, produced more biofilm biomass and melanin, which are known virulence attributes. Interestingly, 40% of C. neoformans strains (clade II) had MICs above the ECV established for this species to amphotericin B. Several non-C. gattii/neoformans species complex (clades III to V) had MICs equal to or above the ECVs established for C. deuterogattii and C. neoformans for all the three antifungal drugs tested. Finally, all the non-C. gattii/neoformans clinical isolates (clades III to V) produced more melanin than the environmental isolates might reflect their particularly enhanced need for melanin during in vivo protection. It is very clear that C. gattii/neoformans species complex (clades I and II) strains, in general, show more similar virulence phenotypes between each other when compared to non-C. gattii/neoformans species complex (clades III to V) isolates. These observations together with the fact that P. laurentii and Naganishia spp. (clades III to V) strains were collected from the outside of a University Hospital, identify features of these yeasts important for environmental and patient colonization and furthermore, define mechanisms for infections with these uncommon pathogens.


Assuntos
Basidiomycota , Cryptococcus gattii , Cryptococcus neoformans , Antifúngicos/farmacologia , Humanos , Virulência , Fatores de Virulência
19.
Microb Genom ; 6(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31860441

RESUMO

Cryptococcus neoformans is an opportunistic fungal pathogen that at its peak epidemic levels caused an estimated million cases of cryptococcal meningitis per year worldwide. This species can grow in diverse environmental (trees, soil and bird excreta) and host niches (intracellular microenvironments of phagocytes and free-living in host tissues). The genetic basic for adaptation to these different conditions is not well characterized, as most experimental work has relied on a single reference strain of C. neoformans. To identify genes important for yeast infection and disease progression, we profiled the gene expression of seven C. neoformans isolates grown in five representative in vitro environmental and in vivo conditions. We characterized gene expression differences using RNA-Seq (RNA sequencing), comparing clinical and environmental isolates from two of the major lineages of this species, VNI and VNBI. These comparisons highlighted genes showing lineage-specific expression that are enriched in subtelomeric regions and in lineage-specific gene clusters. By contrast, we find few expression differences between clinical and environmental isolates from the same lineage. Gene expression specific to in vivo stages reflects available nutrients and stresses, with an increase in fungal metabolism within macrophages, and an induction of ribosomal and heat-shock gene expression within the subarachnoid space. This study provides the widest view to date of the transcriptome variation of C. neoformans across natural isolates, and provides insights into genes important for in vitro and in vivo growth stages.


Assuntos
Cryptococcus neoformans/genética , Regulação Fúngica da Expressão Gênica , Estresse Fisiológico/genética , Animais , Linhagem Celular , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/isolamento & purificação , Cryptococcus neoformans/patogenicidade , Camundongos , RNA-Seq , Transcriptoma , Virulência/genética
20.
Emerg Microbes Infect ; 8(1): 119-129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30866766

RESUMO

Genotypic diversity and fluconazole susceptibility of 82 Cryptococcus neoformans and Cryptococcus gattii isolates from 60 renal transplant recipients in Brazil were characterized. Clinical characteristics of the patients and prognostic factors were analysed. Seventy-two (87.8%) isolates were C. neoformans and 10 (12.2%) were C. gattii. VNI was the most common molecular type (40 cases; 66.7%), followed by VNII (9 cases; 15%), VGII (6 cases; 10%), VNB (4 cases; 6.7%) and VNI/II (1 case; 1.7%). The isolates showed a high genetic diversity in the haplotype network and six new sequence types were described, most of them for VNB. There was a bias towards skin involvement in the non-VNI population (P = .012). VGII isolates exhibited higher fluconazole minimum inhibitory concentrations compared to C. neoformans isolates (P = 0.008). The 30-day mortality rate was 38.3%, and it was significantly associated with fungemia and absence of headache. Patients infected with VGII had a high mortality rate at 90 days (66.7%). A variety of molecular types produce disease in renal transplant recipients in Brazil and highlighted by VGII and VNB. We report the clinical appearance and impact of the molecular type, fluconazole susceptibility of the isolates, and clinical characteristics on patient outcome in this population.


Assuntos
Criptococose/microbiologia , Cryptococcus gattii/isolamento & purificação , Cryptococcus neoformans/isolamento & purificação , Fluconazol/farmacologia , Variação Genética , Transplante de Rim/efeitos adversos , Adulto , Idoso , Brasil , Criptococose/tratamento farmacológico , Criptococose/mortalidade , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus gattii/genética , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/genética , Feminino , Fluconazol/uso terapêutico , Haplótipos , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA