Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 36(12): e2209907, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36735860

RESUMO

Understanding adsorption processes at the molecular level, with multi-technique approaches, is nowadays at the frontier of porous materials research. In this work it is shown that with a proper data treatment, in situ high-resolution powder X-ray diffraction (HR-PXRD) at variable temperature and gas pressure can reveal atomic details of the accommodation sites, the framework dynamics as well as thermodynamic information (isosteric heat of adsorption) of the CO2 adsorption process in the robust iron(III) pyrazolate-based MOF Fe2(BDP)3 [H2BDP = 1,4-bis(1H-pyrazol-4-yl)benzene]. Highly reliable "HR-PXRD adsorption isotherms" can be constructed from occupancy values of CO2 molecules. The "HR-PXRD adsorption isotherms" accurately match the results of conventional static and dynamic gas sorption experiments and Monte Carlo simulations. These results are indicative of the impact of the molecular-level behavior on the bulk properties of the system under study and of the potential of the presented multi-technique approach to understand adsorption processes in metal-organic frameworks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA