Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(1): e23348, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084798

RESUMO

A robust endogenous clock is required for proper function of many physiological processes. The suprachiasmatic nucleus (SCN) constitutes our central circadian clock and allows us to adapt to daily changes in the environment. Aging can cause a decline in the amplitude of circadian rhythms in SCN and peripheral clocks, which contributes to increased risk of several chronic diseases. Strengthening clock function would therefore be an effective strategy to improve health. A high-throughput chemical screening has identified clock-enhancing molecule 3 (CEM3) as small molecule that increases circadian rhythm amplitude in cell lines and SCN explants. It is, however, currently not known whether CEM3 acts by enhancing the amplitude of individual single-cell oscillators or by enhancing synchrony among neurons. In view of CEM3's potential, it is of evident importance to clarify the mode of action of CEM3. Here, we investigated the effects of CEM3 on single-cell PERIOD2::LUCIFERASE rhythms in mouse SCN explants. CEM3 increased the amplitude in approximately 80%-90% of the individual cells in the SCN without disrupting the phase and/or period of their rhythms. Noticeably, CEM3's effect on amplitude is independent of the cell's initial amplitude. These findings make CEM3 a potential therapeutic candidate to restore compromised amplitude in circadian rhythms and will boost the development of other molecular approaches to improve health.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Camundongos , Animais , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/fisiologia , Relógios Circadianos/fisiologia , Luciferases/metabolismo , Neurônios/metabolismo
2.
Brain Behav Immun ; 115: 588-599, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984623

RESUMO

BACKGROUND: Cancer survivors can experience long lasting fatigue resulting in a lower quality of life. How chemotherapy treatment contributes to this fatigue is poorly understood. Previously we have shown in a mouse model of cancer related fatigue that doxorubicin treatment induces fatigue-like symptoms related to disturbed circadian rhythms. However, the specific components of the circadian regulatory circuitry affected by doxorubicin treatment remained unclear. Therefore we investigated the role of the central circadian clock, the suprachiasmatic nucleus (SCN), in chemotherapy-induced fatigue. METHODS: We measured circadian controlled behavior and multiunit neuronal activity in the SCN in freely moving mice exhibiting fatigue-like behavior after doxorubicin treatment under both light-dark (LD) and constant dark (DD) conditions. Additionally, we assessed the expression of inflammation related genes in spleen and kidney as potential inducers of CRF. RESULTS: Doxorubicin treatment significantly reduced both the running wheel activity and time spent using the running wheel for over five weeks after treatment. In contrast to the pronounced effects on behavior and neuronal activity of doxorubicin on circadian rhythms, peripheral inflammation markers only showed minor differences, five weeks after the last treatment. Surprisingly, the circadian SCN neuronal activity under both LD and DD conditions was not affected. However, the circadian timing of neuronal activity in peri-SCN areas (the brain areas surrounding SCN) and circadian rest-activity behavior was strongly affected by doxorubicin, suggesting that the output of the SCN was altered. The reduced correlation between the SCN neuronal activity and behavioral activity after doxorubicin treatment, suggests that the information flow from the SCN to the periphery was disturbed. CONCLUSION: Our preclinical study suggests that chemotherapy-induced fatigue disrupts the circadian rhythms in peripheral brain areas and behavior downstream from the SCN, potentially leading to fatigue like symptoms. Our data suggest that peripheral inflammation responses are less important for the maintenance of fatigue. Chronotherapy that realigns circadian rhythms could represent a non-invasive way to improve patient outcomes following chemotherapy.


Assuntos
Antineoplásicos , Relógios Circadianos , Camundongos , Humanos , Animais , Qualidade de Vida , Ritmo Circadiano/fisiologia , Inflamação , Doxorrubicina , Antineoplásicos/efeitos adversos
3.
FASEB J ; 36(10): e22518, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36057093

RESUMO

Our daily 24-h rhythm is synchronized to the external light-dark cycle resulting from the Earth's daily rotation. In the mammalian brain, the suprachiasmatic nucleus (SCN) serves as the master clock and receives light-mediated input via the retinohypothalamic tract. Abrupt changes in the timing of the light-dark cycle (e.g., due to jet lag) cause a phase shift in the circadian rhythms in the SCN. Here, we investigated the effects of a 6-h delay in the light-dark cycle on PERIOD2::LUCIFERASE expression at the single-cell level in mouse SCN organotypic explants. The ensemble pattern in phase shift response obtained from individual neurons in the anterior and central SCN revealed a bimodal distribution; specifically, neurons in the ventrolateral SCN responded with a rapid phase shift, while neurons in the dorsal SCN generally did not respond to the shift in the light-dark cycle. We also stimulated the hypothalamic tract in acute SCN slices to simulate light-mediated input to the SCN; interestingly, we found similarities between the distribution and fraction of rapid shifting neurons (in response to the delay) and neurons that were excited in response to electrical stimulation. These results suggest that a subpopulation of neurons in the ventral SCN that have an excitatory response to light input, shift their clock more readily than dorsal located neurons, and initiate the SCN's entrainment to the new light-dark cycle. Thus, we propose that light-excited neurons in the anterior and central SCN play an important role in the organism's ability to adjust to changes in the external light-dark cycle.


Assuntos
Fotoperíodo , Núcleo Supraquiasmático , Animais , Ritmo Circadiano/fisiologia , Luz , Luciferases/metabolismo , Mamíferos/metabolismo , Camundongos , Neurônios/metabolismo , Núcleo Supraquiasmático/fisiologia
4.
Cancers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626030

RESUMO

Cancer-related fatigue (CRF) is the most devastating long-term side effect of many cancer survivors that confounds the quality of life for months to years after treatment. However, the cause of CRF is poorly understood. As a result, cancer survivors, at best, receive psychological support. Chemotherapy has been shown to increase the risk of CRF. Here, we study therapy-induced fatigue in a non-tumor-bearing mouse model with three different topoisomerase II-poisoning cancer drugs. These drugs either induce DNA damage and/or chromatin damage. Shortly before and several weeks after treatment, running wheel activity and electroencephalographic sleep were recorded. We show that doxorubicin, combining DNA damage with chromatin damage, unlike aclarubicin or etoposide, induces sustained CRF in this model. Surprisingly, this was not related to changes in sleep. In contrast, our data indicate that the therapy-induced CRF is associated with a disrupted circadian clock. The data suggest that CRF is probably a circadian clock disorder that influences the quality of waking and that the development of CRF depends on the type of chemotherapy provided. These findings could have implications for selecting and improving chemotherapy for the treatment of cancer in order to prevent the development of CRF.

5.
R Soc Open Sci ; 8(2): 201985, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33972875

RESUMO

In this study, we investigated the effect of social environment on circadian patterns in activity by group housing either six male or six female mice together in a cage, under regular light-dark cycles. Based on the interactions among the animals, the social dominance rank of individual mice was quantitatively established by calculating Elo ratings. Our results indicated that, during our experiment, the social dominance hierarchy was rapidly established, stable yet complex, often showing more than one dominant mouse and several subordinate mice. Moreover, we found that especially dominant male mice, but not female mice, displayed a significantly higher fraction of their activity during daytime. This resulted in reduced rhythm amplitude in dominant males. After division into separate cages, male mice showed an enhancement of their 24 h rhythm, due to lower daytime activity. Recordings of several physiological parameters showed no evidence for reduced health as a potential consequence of reduced rhythm amplitude. For female mice, transfer to individual housing did not affect their daily activity pattern. We conclude that 24 h rhythms under light-dark cycles are influenced by the social environment in males but not in females, and lead to a decrement in behavioural rhythm amplitude that is larger in dominant mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA