RESUMO
Semicarbazide-sensitive amine oxidase (SSAO) is both a soluble- and membrane-bound transmembrane protein expressed in the vascular endothelial and in smooth muscle cells. In vascular endothelial cells, SSAO contributes to the development of atherosclerosis by mediating a leukocyte adhesion cascade; however, its contributory role in the development of atherosclerosis in VSMCs has not yet been fully explored. This study investigates SSAO enzymatic activity in VSMCs using methylamine and aminoacetone as model substrates. The study also addresses the mechanism by which SSAO catalytic activity causes vascular damage, and further evaluates the contribution of SSAO in oxidative stress formation in the vascular wall. SSAO demonstrated higher affinity for aminoacetone when compared to methylamine (Km = 12.08 µM vs. 65.35 µM). Aminoacetone- and methylamine-induced VSMCs death at concentrations of 50 & 1000 µM, and their cytotoxic effect, was reversed with 100 µM of the irreversible SSAO inhibitor MDL72527, which completely abolished cell death. Cytotoxic effects were also observed after 24 h of exposure to formaldehyde, methylglyoxal and H2O2. Enhanced cytotoxicity was detected after the simultaneous addition of formaldehyde and H2O2, as well as methylglyoxal and H2O2. The highest ROS production was observed in aminoacetone- and benzylamine-treated cells. MDL72527 abolished ROS in benzylamine-, methylamine- and aminoacetone-treated cells (**** p < 0.0001), while ßAPN demonstrated inhibitory potential only in benzylamine-treated cells (* p < 0.05). Treatment with benzylamine, methylamine and aminoacetone reduced the total GSH levels (**** p < 0.0001); the addition of MDL72527 and ßAPN failed to reverse this effect. Overall, a cytotoxic consequence of SSAO catalytic activity was observed in cultured VSMCs where SSAO was identified as a key mediator in ROS formation. These findings could potentially associate SSAO activity with the early developing stages of atherosclerosis through oxidative stress formation and vascular damage.
Assuntos
Amina Oxidase (contendo Cobre) , Ratos , Animais , Amina Oxidase (contendo Cobre)/metabolismo , Músculo Liso Vascular/metabolismo , Peróxido de Hidrogênio/farmacologia , Aldeído Pirúvico/farmacologia , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Metilaminas/metabolismo , Benzilaminas/farmacologia , Formaldeído/farmacologiaRESUMO
Arterial medial calcification (AMC), the deposition of hydroxyapatite in the medial layer of the arteries, is a known risk factor for cardiovascular events. Oxidative stress is a known inducer of AMC and endogenous antioxidants, such as glutathione (GSH), may prevent calcification. GSH synthesis, however, can be limited by cysteine levels. Therefore, we assessed the effects of the cysteine prodrug 2-oxothiazolidine-4-carboxylic acid (OTC), on vascular smooth muscle cell (VSMC) calcification to ascertain its therapeutic potential. Human aortic VSMCs were cultured in basal or mineralising medium (1 mM calcium chloride/sodium phosphate) and treated with OTC (1-5 mM) for 7 days. Cell-based assays and western blot analysis were performed to assess cell differentiation and function. OTC inhibited calcification ≤90%, which was associated with increased ectonucleotide pyrophosphatase/phosphodiesterase activity, and reduced apoptosis. In calcifying cells, OTC downregulated protein expression of osteoblast markers (Runt-related transcription factor 2 and osteopontin), while maintaining expression of VSMC markers (smooth muscle protein 22α and α-smooth muscle actin). GSH levels were significantly reduced by 90% in VSMCs cultured in calcifying conditions, which was associated with declines in expression of gamma-glutamylcysteine synthetase and GSH synthetase. Treatment of calcifying cells with OTC blocked the reduction in expression of both enzymes and prevented the decline in GSH. This study shows OTC to be a potent and effective inhibitor of in vitro VSMC calcification. It appears to maintain GSH synthesis which may, in turn, prevent apoptosis and VSMCs gaining osteoblast-like characteristics. These findings may be of clinical relevance and raise the possibility that treatment with OTC could benefit patients susceptible to AMC.
Assuntos
Glutationa/biossíntese , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Pró-Fármacos/farmacologia , Ácido Pirrolidonocarboxílico/farmacologia , Tiazolidinas/farmacologia , Calcificação Vascular/prevenção & controle , Fosfatase Alcalina/metabolismo , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Glutamato-Cisteína Ligase/metabolismo , Glutationa Sintase/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologiaRESUMO
Although vascular calcification (VC) is prevalent in Type 2 diabetes mellitus (T2DM), underlying mechanisms remain unclear. Neither is it known whether T2DM confers calcific potential (CP) on serum, enabling it to induce VC outside the disease milieu. We, therefore, investigated the CP of serum from controls and subjects with T2DM with and without in vivo VC. Samples from 20 healthy controls and 44 age- and sex-matched patients with T2DM with modification of diet in renal disease estimated glomerular filtration rate (MDRD-4 eGFR) > 60 ml·min-1 were analysed for CP using rat aortic smooth muscle cells in vitro CT scans of femoral arteries identified individuals with in vivo calcification. Serum from subjects with T2DM revealed significantly greater CP than controls. This was further enhanced in the presence of in vivo VC. Addition of ß-glycerophosphate (ß-GP) plus CaCl2 increased the CP of T2DM serum but not of controls. Along with age, CP was an independent predictor of the presence of VC. In receiver operator curve (ROC) analysis, CP was a significant predictor of femoral arterial VC (C-statistic 0.70: P=0.009). The distribution of CP was bimodal around a cutoff of 100 nmoles of Ca2+ protein mg-1, with a higher proportion of Type 2 diabetes subjects with in vivo calcification (T2DM+) sera above the cutoff value. This group also showed elevated levels of osteoprotegerin (OPG) and matrix Gla protein (MGP). Diabetes confers CP on the serum which is enhanced by the presence of in vivo VC. The CP acquired may be dependent on levels of OPG and MGP. These findings may be clinically relevant for early identification of individuals at risk of VC and for informing therapeutic strategies.
Assuntos
Diabetes Mellitus Tipo 2/complicações , Calcificação Vascular/sangue , Calcificação Vascular/etiologia , Idoso , Proteínas de Ligação ao Cálcio/sangue , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Proteínas da Matriz Extracelular/sangue , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Osteoprotegerina/sangue , Calcificação Vascular/fisiopatologia , Proteína de Matriz GlaRESUMO
Upregulation of L-arginine transport by pro-inflammatory mediators is a widely reported phenomenon which accompanies the expression of the inducible nitric oxide synthase (iNOS) enzyme in various cells. Both processes require de novo protein synthesis which may be regulated differentially through diverging signalling pathways. This is particularly defined by observations that the glucocorticoid dexamethasone, acting potentially through NF-κB, selectively blocks the expression of iNOS whilst having little or no effect on transport; suggesting that this ubiquitous transcription factor may not be required for induced transporter activity. This notion is however controversial as is the suggestion that dexamethasone may regulate iNOS expression exclusively through NF-κB. Thus, to further understand the mechanisms that control these processes, we have examined the level at which dexamethasone acts, investigating whether this involves NF-κB and whether the latter selectively regulates iNOS induction. Our current data directly demonstrate that induced L: -arginine transport is critically dependent on the activation of NF-κB, and further confirmed its role in the induction of iNOS in rat aortic smooth muscle cells. More importantly, dexamethasone enhanced both iNOS and CAT gene expression but repressed iNOS protein with no noticeable effects on transporter function or indeed NF-κB activation. These novel and unexpected findings reflect the complex nature of the regulation of iNOS by glucocorticoids and prove, contrary to previous assumptions, that dexamethasone can regulate CAT gene expression despite failing to alter transporter function. Moreover, the effects of dexamethasone occur through a non-NF-κB-mediated action even though NF-κB is required for both processes.
Assuntos
Transportador 2 de Aminoácidos Catiônicos/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Arginina/metabolismo , Transportador 1 de Aminoácidos Catiônicos/genética , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Transportador 2 de Aminoácidos Catiônicos/genética , Células Cultivadas , Indução Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica , Proteínas I-kappa B/metabolismo , Mediadores da Inflamação/farmacologia , Interferon gama/farmacologia , Leupeptinas/farmacologia , Lipopolissacarídeos/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Inibidores de Proteassoma , RatosRESUMO
Vascular smooth muscle cells (VSMCs) are the main stromal cells in the medial layer of the vascular wall. These cells produce the extracellular matrix (ECM) and are involved in many pathological changes in the vascular wall. Semicarbazide-sensitive amine oxidase (SSAO) and lysyl oxidase (LOX) are vascular enzymes associated with the development of atherosclerosis. In the vascular smooth muscle cells, increased SSAO activity elevates reactive oxygen species (ROS) and induces VSMCs death; increased LOX induces chemotaxis through hydrogen peroxide dependent mechanisms; and decreased LOX contributes to endothelial dysfunction. This study investigates the relationship between SSAO and LOX in VSMCs by studying their activity, protein, and mRNA levels during VSMCs passaging and after silencing the LOX gene, while using their respective substrates and inhibitors. At the basal level, LOX activity decreased with passage and its protein expression was maintained between passages. ßAPN abolished LOX activity (** p < 0.01 for 8 vs. 3 and * p < 0.05 for 5 vs. 8) and had no effect on LOX protein and mRNA levels. MDL72527 reduced LOX activity at passage 3 and 5 (## p < 0.01) and had no effect on LOX protein, and mRNA expression. At the basal level, SSAO activity also decreased with passage, and its protein expression was maintained between passages. MDL72527 abolished SSAO activity (**** p < 0.0001 for 8 vs. 3 and * p < 0.05 for 5 vs. 8), VAP-1 expression at passage 5 (** p < 0.01) and 8 (**** p < 0.0001), and Aoc3 mRNA levels at passage 8 (* p < 0.05). ßAPN inhibited SSAO activity (**** p < 0.0001 for 5 vs. 3 and 8 vs. 3 and * p < 0.05 for 5 vs. 8), VAP-1 expression at passage 3 (* p < 0.05), and Aoc3 mRNA levels at passage 3 (* p < 0.05). Knockdown of the LOX gene (**** p < 0.0001 for Si6 vs. Sictrl and *** p < 0.001 for Si8 vs. Sictrl) and LOX protein (** p < 0.01 for Si6 and Si8 vs. Sictrl) in VSMCs at passage 3 resulted in a reduction in Aoc3 mRNA (#### p < 0.0001 for Si6 vs. Sictrl and ### p < 0.001 for Si8 vs. Sictrl) and VAP-1 protein (# p < 0.05 for Si8 vs. Sictrl). These novel findings demonstrate a passage dependent decrease in LOX activity and increase in SSAO activity in rat aortic VSMCs and show an association between both enzymes in early passage rat aortic VSMCs, where LOX was identified as a regulator of SSAO activity, protein, and mRNA expression.
Assuntos
Amina Oxidase (contendo Cobre) , Ratos , Animais , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Músculo Liso Vascular/metabolismo , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Aorta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: To evaluate intraoperative and postoperative cytokines in patients who underwent robotic prostatectomy (RP) at a pressure of 12 or 15âmmâHg, and the risk of postoperative ileus. MATERIALS AND METHODS: We presented the first series evaluating intraoperative and postoperative cytokines in patients undergoing RP at a pressure of 12 or 15âmmâHg by a single surgeon. Changes in cytokine concentrations were shown to correlate with surgical outcomes and pathological states. The study investigated the changes in cytokine concentrations (interferon-γ, tumor necrosis factor-α, interleukin-1ß [IL-1ß], IL-2, IL-4, IL-6, IL-12, and IL-17) at different pneumoperitoneum pressures and their potential role in the development of postoperative ileus. RESULTS: The data on 10 consecutive patients confirmed that a lower pneumoperitoneum pressure was associated with lower cytokine levels and a lower risk of ileus. There were increased levels of postoperative interferon-γ, tumor necrosis factor-α, IL-12p70, IL-1ß, IL-2, IL-4, and IL-17a at 15âmmâHg when compared to 12âmmâHg. CONCLUSIONS: The data indicated that lower pressure RP reduced intra-/postoperative cytokine levels confirming our hypothesis. Larger patient numbers are required to further validate this but the implications of this data will benefit not only urological patients but also other speciality patients undergoing minimally invasive surgery.
RESUMO
Vascular calcification (VC) is common in subjects with chronic kidney disease (CKD) and is associated with increased cardiovascular risk. It is an active process involving transdifferentiation of arterial smooth muscle cells (SMCs) into osteogenic phenotype. We investigated the ability of serum from CKD subjects to induce calcification in human SMCs in vitro (calcific potential of sera: CP), and associated changes in expression of Runt-related transcription factor 2 (RUNX2), SM22α, and Klotho. Sera from subjects with CKD (18 stage 3, 17 stage 4/5, and 29 stage 5D) and 20 controls were added to human cultured SMCs and CP quantified. The CP of CKD sera was greater (P<0.01) than that of controls, though not influenced by CKD stage. Modification of diet in renal disease estimated glomerular filtration rate (MDRD-4 eGFR) (P<0.001), serum phosphate (P=0.042), receptor activator of nuclear factor κappa-B ligand (RANKL) (P=0.001), parathyroid hormone (PTH) (P=0.014), and high-density lipoprotein (HDL)/cholesterol ratio (P=0.026) were independent predictors of CP accounting for 45% of variation. Adding calcification buffer (CB: calcium chloride [7 mM] and ß-glycerophosphate [7 mM]) increased the CP of control sera to approximate that of CKD sera. CP of CKD sera was unchanged. CKD sera increased RUNX2 expression (P<0.01) in human SMCs and decreased SM22α expression (P<0.05). Co-incubating control but not CKD serum with CB further increased RUNX2 expression (P<0.01). Both SM22α and Klotho expression decreased significantly (P<0.01) in the presence of CKD serum, and were virtually abolished with stage 5D sera. These findings support active regulation by CKD serum of in vitro VC by induction of RUNX2 and suppression of SM22α and Klotho.
Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glucuronidase/metabolismo , Miócitos de Músculo Liso/metabolismo , Soro/química , Uremia/sangue , Calcificação Vascular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Aorta/citologia , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/farmacologia , Feminino , Humanos , Proteínas Klotho , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos , Insuficiência Renal Crônica/sangue , Calcificação Vascular/induzido quimicamenteRESUMO
The molecular events mediating the immunomodulatory properties of cannabinoids have remained largely unresolved. We have therefore investigated the molecular mechanism(s) through which R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl] pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-napthanlenyl) methanone (WIN55212-2) modulate production of interleukin-8 (IL-8) in HT-29 cells. Release of IL-8 induced by tumor necrosis factor-alpha (TNF-alpha) was determined by enzyme-linked immunosorbent assay (ELISA). Changes in expression of inhibitory kappa B (IkappaB) were monitored by Western blotting and activation of nuclear factor-kappa B (NF-kappaB) was determined in electrophoretic mobility shift assay (EMSAs). TNF-alpha induced release of IL-8 was inhibited by WIN55212-2 which also blocked the degradation of IkappaB-alpha and activation of NF-kappaB induced by TNF-alpha. These data provide strong evidence that WIN55212-2 may modulate IL-8 release by negatively regulating the signaling cascade leading to the activation of NF-kappaB. These findings highlight a potential mechanism for the immunomodulatory properties of cannabinoids and contribute towards acquiring a clear understanding of the role of cannabinoids in inflammation.