Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(18): 183601, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374702

RESUMO

We experimentally study entangled two-photon absorption in rhodamine 6G as a function of the spatial properties of a high flux of broadband entangled photon pairs. We first demonstrate a key signature dependence of the entangled two-photon absorption rate on the type of entangled pair flux attenuation: linear, when the laser pump power is attenuated, and quadratic, when the pair flux itself experiences linear loss. We then perform a fluorescence-based Z-scan measurement to study the influence of beam waist size on the entangled two-photon absorption process and compare this to classical single- and two-photon absorption processes. We demonstrate that the entangled two-photon absorption shares a beam waist dependence similar to that of classical two-photon absorption. This result presents an additional argument for the wide range of contrasting values of quoted entangled two-photon absorption cross sections of dyes in literature.

2.
Phys Rev Lett ; 125(11): 110506, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975988

RESUMO

We report the experimental realization of heralded distribution of single-photon path entanglement at telecommunication wavelengths in a repeater-like architecture. The entanglement is established upon detection of a single photon, originating from one of two spontaneous parametric down-conversion photon pair sources, after erasing the photon's which-path information. In order to certify the entanglement, we use an entanglement witness which does not rely on postselection. We herald entanglement between two locations, separated by a total distance of 2 km of optical fiber, at a rate of 1.6 kHz. This work paves the way towards high-rate and practical quantum repeater architectures.

3.
Phys Rev Lett ; 116(19): 190501, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232009

RESUMO

Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections-measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. Here we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW that significantly reduces the experimental complexity. By applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.

4.
Phys Rev Lett ; 117(7): 070404, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563941

RESUMO

We demonstrate the violation of an Einstein-Podolsky-Rosen steering inequality developed for single-photon path entanglement with displacement-based detection. We use a high-rate source of heralded single-photon path-entangled states, combined with high-efficiency superconducting-based detectors, in a scheme that is free of any postselection and thus immune to the detection loophole. This result conclusively demonstrates single-photon entanglement in a one-sided device-independent scenario, and opens the way towards implementations of device-independent quantum technologies within the paradigm of path entanglement.

5.
Phys Rev Lett ; 114(17): 170504, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978215

RESUMO

How can one detect entanglement between multiple optical paths sharing a single photon? We address this question by proposing a scalable protocol, which only uses local measurements where single photon detection is combined with small displacement operations. The resulting entanglement witness does not require postselection, nor assumptions about the photon number in each path. Furthermore, it guarantees that entanglement lies in a subspace with at most one photon per optical path and reveals genuinely multipartite entanglement. We demonstrate its scalability and resistance to loss by performing various experiments with two and three optical paths. We anticipate applications of our results for quantum network certification.

6.
Opt Express ; 22(4): 4371-8, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663760

RESUMO

We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a short cavity. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs (s. mW. MHz)(-1) is reported. The cavity parameters are chosen such that the photon pair modes emitted can be matched to telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks.

7.
Opt Express ; 22(14): 17246-53, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25090538

RESUMO

We report on the generation of indistinguishable photon pairs at telecom wavelengths based on a type-II parametric down conversion process in a periodically poled potassium titanyl phosphate (PPKTP) crystal. The phase matching, pump laser characteristics and coupling geometry are optimised to obtain spectrally uncorrelated photons with high coupling efficiencies. Four photons are generated by a counter-propagating pump in the same crystal and anlysed via two photon interference experiments between photons from each pair source as well as joint spectral and g((2)) measurements. We obtain a spectral purity of 0.91 and coupling efficiencies around 90% for all four photons without any filtering. These pure indistinguishable photon sources at telecom wavelengths are perfectly adapted for quantum network demonstrations and other multi-photon protocols.

8.
Phys Rev Lett ; 113(17): 173601, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25379916

RESUMO

Harnessing nonlinearities strong enough to allow single photons to interact with one another is not only a fascinating challenge but also central to numerous advanced applications in quantum information science. Here we report the nonlinear interaction between two single photons. Each photon is generated in independent parametric down-conversion sources. They are subsequently combined in a nonlinear waveguide where they are converted into a single photon of higher energy by the process of sum-frequency generation. Our approach results in the direct generation of photon triplets. More generally, it highlights the potential for quantum nonlinear optics with integrated devices and, as the photons are at telecom wavelengths, it opens the way towards novel applications in quantum communication such as device-independent quantum key distribution.

9.
Opt Express ; 21(23): 27641-51, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514282

RESUMO

Multi-photon and quantum communication experiments such as loophole-free Bell tests and device independent quantum key distribution require entangled photon sources which display high coupling efficiency. In this paper we put forward a simple quantum theoretical model which allows the experimenter to design a source with high pair coupling efficiency. In particular we apply this approach to a situation where high coupling has not been previously obtained: we demonstrate a symmetric coupling efficiency of more than 80% in a highly frequency non-degenerate configuration. Furthermore, we demonstrate this technique in a broad range of configurations, i.e. in continuous wave and pulsed pump regimes, and for different nonlinear crystals.

10.
J Phys Chem Lett ; 14(10): 2613-2619, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36888738

RESUMO

The detailed analysis of the sum-over-state formula for the entanglement-induced two-photon absorption (ETPA) transition moment shows that the magnitude of the ETPA cross-section is expected to vary significantly depending on the coherence time Te and the relative position of just two electronic states. Moreover, the dependency on Te is periodic. These predictions are confirmed by molecular quantum mechanical calculations for several chromophores.

11.
Phys Rev Lett ; 104(18): 180504, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482160

RESUMO

Single-photon entanglement is a simple form of entanglement that exists between two spatial modes sharing a single photon. Despite its elementary form, it provides a resource as useful as polarization-entangled photons and it can be used for quantum teleportation and entanglement swapping operations. Here, we report the first experiment where single-photon entanglement is purified with a simple linear-optics based protocol. In addition to its conceptual interest, this result might find applications in long distance quantum communication based on quantum repeaters.

12.
Nat Commun ; 4: 2324, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23945795

RESUMO

The parametric interaction of light beams in nonlinear materials is usually thought to be too weak to be observed when the fields involved are at the single-photon level. However, such single-photon level nonlinearity is not only fundamentally fascinating but holds great potential for emerging technologies and applications involving heralding entanglement at a distance. Here we use a high-efficiency waveguide to demonstrate the sum-frequency generation between a single photon and a single-photon level coherent state. The use of an integrated, solid state, room temperature device and telecom wavelengths makes this type of system directly applicable to future quantum communication technologies such as device-independent quantum key distribution.

13.
Phys Rev Lett ; 90(19): 193601, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12785945

RESUMO

Complete and precise characterization of a quantum dynamical process can be achieved via the method of quantum process tomography. Using a source of correlated photons, we have implemented several methods, each investigating a wide range of processes, e.g., unitary, decohering, and polarizing. One of these methods, ancilla-assisted process tomography (AAPT), makes use of an additional "ancilla system," and we have theoretically determined the conditions when AAPT is possible. Surprisingly, entanglement is not required. We present data obtained using both separable and entangled input states. The use of entanglement yields superior results, however.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA