Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 52(4): 620-634.e6, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32268121

RESUMO

Innate lymphoid cells (ILCs) play an important role in the control and maintenance of barrier immunity. However, chronic activation of ILCs results in immune-mediated pathology. Here, we show that tissue-resident type 2 ILCs (ILC2s) display a distinct metabolic signature upon chronic activation. In the context of allergen-driven airway inflammation, ILC2s increase their uptake of both external lipids and glucose. Externally acquired fatty acids are transiently stored in lipid droplets and converted into phospholipids to promote the proliferation of ILC2s. This metabolic program is imprinted by interleukin-33 (IL-33) and regulated by the genes Pparg and Dgat1, which are both controlled by glucose availability and mTOR signaling. Restricting dietary glucose by feeding mice a ketogenic diet largely ablated ILC2-mediated airway inflammation by impairing fatty acid metabolism and the formation of lipid droplets. Together, these results reveal that pathogenic ILC2 responses require lipid metabolism and identify ketogenic diet as a potent intervention strategy to treat airway inflammation.


Assuntos
Alérgenos/administração & dosagem , Asma/dietoterapia , Diacilglicerol O-Aciltransferase/imunologia , Dieta Cetogênica/métodos , Interleucina-33/imunologia , Gotículas Lipídicas/metabolismo , Subpopulações de Linfócitos T/imunologia , Alternaria/química , Animais , Asma/induzido quimicamente , Asma/imunologia , Asma/patologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Citocinas/administração & dosagem , Diacilglicerol O-Aciltransferase/genética , Modelos Animais de Doenças , Ácidos Graxos/imunologia , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Glucose/imunologia , Glucose/metabolismo , Imunidade Inata , Interleucina-33/administração & dosagem , Interleucina-33/genética , Interleucinas/administração & dosagem , Gotículas Lipídicas/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/genética , PPAR gama/imunologia , Papaína/administração & dosagem , Fosfolipídeos/imunologia , Fosfolipídeos/metabolismo , Cultura Primária de Células , Subpopulações de Linfócitos T/classificação , Subpopulações de Linfócitos T/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Linfopoietina do Estroma do Timo
2.
Nat Immunol ; 15(11): 1026-37, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25263125

RESUMO

Tissue-resident macrophages constitute heterogeneous populations with unique functions and distinct gene-expression signatures. While it has been established that they originate mostly from embryonic progenitor cells, the signals that induce a characteristic tissue-specific differentiation program remain unknown. We found that the nuclear receptor PPAR-γ determined the perinatal differentiation and identity of alveolar macrophages (AMs). In contrast, PPAR-γ was dispensable for the development of macrophages located in the peritoneum, liver, brain, heart, kidneys, intestine and fat. Transcriptome analysis of the precursors of AMs from newborn mice showed that PPAR-γ conferred a unique signature, including several transcription factors and genes associated with the differentiation and function of AMs. Expression of PPAR-γ in fetal lung monocytes was dependent on the cytokine GM-CSF. Therefore, GM-CSF has a lung-specific role in the perinatal development of AMs through the induction of PPAR-γ in fetal monocytes.


Assuntos
Diferenciação Celular/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Macrófagos Alveolares/citologia , Monócitos/citologia , PPAR gama/biossíntese , Animais , Antígeno CD11c/genética , Antígeno CD11c/imunologia , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Pulmão/citologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/genética
4.
J Lipid Res ; 63(4): 100188, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247455

RESUMO

Fatty acid beta-oxidation is a key process in mammalian lipid catabolism. Disturbance of this process results in severe clinical symptoms, including dysfunction of the liver, a major beta-oxidizing tissue. For a thorough understanding of this process, a comprehensive analysis of involved fatty acid and acyl-carnitine intermediates is desired, but capable methods are lacking. Here, we introduce oxaalkyne and alkyne fatty acids as novel tracers to study the beta-oxidation of long- and medium-chain fatty acids in liver lysates and primary hepatocytes. Combining these new tracer tools with highly sensitive chromatography and mass spectrometry analyses, this study confirms differences in metabolic handling of fatty acids of different chain length. Unlike longer chains, we found that medium-chain fatty acids that were activated inside or outside of mitochondria by different acyl-CoA synthetases could enter mitochondria in the form of free fatty acids or as carnitine esters. Upon mitochondrial beta-oxidation, shortened acyl-carnitine metabolites were then produced and released from mitochondria. In addition, we show that hepatocytes ultimately also secreted these shortened acyl chains into their surroundings. Furthermore, when mitochondrial beta-oxidation was hindered, we show that peroxisomal beta-oxidation likely acts as a salvage pathway, thereby maintaining the levels of shortened fatty acid secretion. Taken together, we conclude that this new method based on oxaalkyne and alkyne fatty acids allows for metabolic tracing of the beta-oxidation pathway in tissue lysate and in living cells with unique coverage of metabolic intermediates and at unprecedented detail.


Assuntos
Alcinos , Ácidos Graxos , Animais , Carnitina/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Oxirredução
5.
Nat Methods ; 16(11): 1123-1130, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31611692

RESUMO

Cellular lipid metabolism is a complex network process comprising dozens of enzymes, multiple organelles and more than a thousand lipid species. Tracing metabolic reactions in this network is a major technological and scientific challenge. Using a click-chemistry mass spectrometry reporter strategy, we have developed a specific, highly sensitive and robust tracing procedure for alkyne-labeled lipids. The method enables sample multiplexing, which improves sample comparison. We demonstrate this by a time-resolved analysis of hepatocyte glycerolipid metabolism with parallel quantitative monitoring of 120 labeled lipid species. The subfemtomole sensitivity enabled a single cell analysis of fatty acid incorporation into neutral and membrane lipids. The results demonstrate the robustness of lipid homeostasis at the single cell level.


Assuntos
Metabolismo dos Lipídeos , Análise de Célula Única , Animais , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Masculino , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipídeos/metabolismo
6.
FASEB J ; 35(10): e21939, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34549824

RESUMO

The unfolded protein response (UPR) is associated with hepatic metabolic function, yet it is not well understood how endoplasmic reticulum (ER) disturbance might influence metabolic homeostasis. Here, we describe the physiological function of Cysteine-rich with EGF-like domains 2 (Creld2), previously characterized as a downstream target of the ER-stress signal transducer Atf6. To this end, we generated Creld2-deficient mice and induced UPR by injection of tunicamycin. Creld2 augments protein folding and creates an interlink between the UPR axes through its interaction with proteins involved in the cellular stress response. Thereby, Creld2 promotes tolerance to ER stress and recovery from acute stress. Creld2-deficiency leads to a dysregulated UPR and causes the development of hepatic steatosis during ER stress conditions. Moreover, Creld2-dependent enhancement of the UPR assists in the regulation of energy expenditure. Furthermore, we observed a sex dimorphism in human and mouse livers with only male patients showing an accumulation of CRELD2 protein during the progression from non-alcoholic fatty liver disease to non-alcoholic steatohepatitis and only male Creld2-deficient mice developing hepatic steatosis upon aging. These results reveal a Creld2 function at the intersection between UPR and metabolic homeostasis and suggest a mechanism in which chronic ER stress underlies fatty liver disease in males.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Homeostase , Fígado/metabolismo , Resposta a Proteínas não Dobradas , Envelhecimento , Animais , Progressão da Doença , Estresse do Retículo Endoplasmático , Fígado Gorduroso , Humanos , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica
7.
J Lipid Res ; 62: 100022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33453218

RESUMO

Phospholipids with a choline head group are an abundant component of cellular membranes and are involved in many important biological functions. For studies on the cell biology and metabolism of these lipids, traceable analogues where propargylcholine replaces the choline head group have proven useful. We present a novel method to analyze propargylcholine phospholipids by MS. The routine employs 1-radyl-2-lyso-sn-glycero-3-phosphopropargylcholines as labeled lysophosphatidylcholine precursors, which upon cellular conversion direct the traceable tag with superb specificity and efficiency to the primary target lipid class. Using azidopalmitate as a click-chemistry reporter, we introduce a highly specific, sensitive, and robust MS detection procedure for the propargylcholine phospholipids. In a first study, we apply the new technique to investigate choline phospholipid metabolism in brain endothelial cells. These experiments reveal differences in the metabolism of phosphatidylcholine and its pendant, ether phosphatidylcholine. The novel method described here opens a new, quantitative, and detailed view on propargylcholine phospholipid metabolism and will greatly facilitate future studies on choline phospholipid metabolism.


Assuntos
Células Endoteliais
8.
EMBO J ; 35(24): 2699-2716, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27879284

RESUMO

Seipin is an endoplasmic reticulum (ER) membrane protein implicated in lipid droplet (LD) biogenesis and mutated in severe congenital lipodystrophy (BSCL2). Here, we show that seipin is stably associated with nascent ER-LD contacts in human cells, typically via one mobile focal point per LD Seipin appears critical for such contacts since ER-LD contacts were completely missing or morphologically aberrant in seipin knockout and BSCL2 patient cells. In parallel, LD mobility was increased and protein delivery from the ER to LDs to promote LD growth was decreased. Moreover, while growing LDs normally acquire lipid and protein constituents from the ER, this process was compromised in seipin-deficient cells. In the absence of seipin, the initial synthesis of neutral lipids from exogenous fatty acid was normal, but fatty acid incorporation into neutral lipids in cells with pre-existing LDs was impaired. Together, our data suggest that seipin helps to connect newly formed LDs to the ER and that by stabilizing ER-LD contacts seipin facilitates the incorporation of protein and lipid cargo into growing LDs in human cells.


Assuntos
Retículo Endoplasmático/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Gotículas Lipídicas/metabolismo , Células Cultivadas , Subunidades gama da Proteína de Ligação ao GTP/genética , Técnicas de Inativação de Genes , Humanos , Modelos Biológicos
9.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118253

RESUMO

Hemagglutinin (HA) of influenza virus is incorporated into cholesterol-enriched nanodomains of the plasma membrane. Phylogenetic group 2 HAs contain the conserved cholesterol consensus motif (CCM) YKLW in the transmembrane region. We previously reported that mutations in the CCM retarded intracellular transport of HA and decreased its nanodomain association. Here, we analyzed whether cholesterol interacts with the CCM. Incorporation of photocholesterol into HA was significantly reduced if the whole CCM is replaced by alanine, both using immunoprecipitated HA and when HA is embedded in the membrane. We next used reverse genetics to investigate the significance of the CCM for virus replication. No virus was rescued if the whole motif is exchanged (YKLW4A); singly (LA) or doubly (YK2A and LW2A) mutated virus showed decreased titers and a comparative fitness disadvantage. In polarized cells, transport of HA mutants to the apical membrane was not disturbed. Reduced amounts of HA and cholesterol were incorporated into the viral membrane. Mutant viruses exhibit a decrease in hemolysis, which is only partially corrected if the membrane is replenished with cholesterol. More specifically, viruses have a defect in hemifusion, as demonstrated by fluorescence dequenching. Cells expressing HA YKLW4A fuse with erythrocytes, but the number of events is reduced. Even after acidification unfused erythrocytes remain cell bound, a phenomenon not observed with wild-type HA. We conclude that cholesterol binding to a group 2 HA is essential for virus replication. It has pleiotropic effects on virus assembly and membrane fusion, mainly on lipid mixing and possibly a preceding step.IMPORTANCE The glycoprotein HA is a major pathogenicity factor of influenza viruses. Whereas the structure and function of HA's ectodomain is known in great detail, similar data for the membrane-anchoring part of the protein are missing. Here, we demonstrate that the transmembrane region of a group 2 HA interacts with cholesterol, the major lipid of the plasma membrane and the defining element of the viral budding site nanodomains of the plasma membrane. The cholesterol binding motif is essential for virus replication. Its partial removal affects various steps of the viral life cycle, such as assembly of new virus particles and their subsequent cell entry via membrane fusion. A cholesterol binding pocket in group 2 HAs might be a promising target for a small lipophilic drug that inactivates the virus.


Assuntos
Colesterol/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H7N1/crescimento & desenvolvimento , Replicação Viral , Motivos de Aminoácidos , Animais , Sítios de Ligação , Análise Mutacional de DNA , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H7N1/genética , Células Madin Darby de Rim Canino , Ligação Proteica , Genética Reversa
10.
J Biol Chem ; 292(15): 6177-6189, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28258214

RESUMO

The lysosomal acid ß-glucosidase GBA1 and the non-lysosomal ß-glucosidase GBA2 degrade glucosylceramide (GlcCer) to glucose and ceramide in different cellular compartments. Loss of GBA2 activity and the resulting accumulation of GlcCer results in male infertility, whereas mutations in the GBA1 gene and loss of GBA1 activity cause the lipid-storage disorder Gaucher disease. However, the role of GBA2 in Gaucher disease pathology and its relationship to GBA1 is not well understood. Here, we report a GBA1-dependent down-regulation of GBA2 activity in patients with Gaucher disease. Using an experimental approach combining cell biology, biochemistry, and mass spectrometry, we show that sphingosine, the cytotoxic metabolite accumulating in Gaucher cells through the action of GBA2, directly binds to GBA2 and inhibits its activity. We propose a negative feedback loop, in which sphingosine inhibits GBA2 activity in Gaucher cells, preventing further sphingosine accumulation and, thereby, cytotoxicity. Our findings add a new chapter to the understanding of the complex molecular mechanism underlying Gaucher disease and the regulation of ß-glucosidase activity in general.


Assuntos
Regulação para Baixo , Doença de Gaucher/enzimologia , Regulação Enzimológica da Expressão Gênica , Modelos Biológicos , Esfingosina/metabolismo , beta-Glucosidase/biossíntese , Animais , Linhagem Celular , Doença de Gaucher/genética , Glucosilceramidase , Glucosilceramidas/genética , Glucosilceramidas/metabolismo , Humanos , Masculino , Camundongos , Esfingosina/genética , beta-Glucosidase/genética
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 584-594, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29524543

RESUMO

Mammalian phosphoglycolate phosphatase (PGP, also known as AUM or glycerol-3-phosphate phosphatase) is a small molecule-directed phosphatase important for metabolite repair and lipid metabolism. Although PGP was first characterized as an enzyme involved in epidermal growth factor (EGF) signaling, PGP protein substrates have remained elusive. Here we show that PGP depletion facilitates fatty acid flux through the intracellular triacylglycerol/fatty acid cycle, and that phosphatidylinositol-4,5-bisphosphate (PIP2), produced in a side branch of this cycle, is critical for the impact of PGP activity on EGF-induced signaling. Loss of endogenous PGP expression amplified both EGF-induced EGF receptor autophosphorylation and Src-dependent tyrosine phosphorylation of phospholipase C-γ1 (PLCγ1). Furthermore, EGF enhanced the formation of circular dorsal ruffles in PGP-depleted cells via Src/PLCγ1/protein kinase C (PKC)-dependent signaling to the cytoskeleton. Inhibition of adipose triglyceride lipase normalized the increased PIP2 content, reduced EGF-dependent PLCγ1 hyperphosphorylation, and decreased the elevated dorsal ruffle formation of PGP-depleted cells. Our data explain how PGP exerts control over EGF-induced cellular protein tyrosine phosphorylation, and reveal an unexpected influence of triacylglycerol turnover on growth factor signaling.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Triglicerídeos/metabolismo , Linhagem Celular , Fator de Crescimento Epidérmico/genética , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Triglicerídeos/genética
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 614-624, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29526665

RESUMO

ACSL3 is the only long chain fatty acyl-CoA synthetase consistently found on growing and mature lipid droplets (LDs), suggesting that this specific localization has biological relevance. Current models for LD growth propose that triglycerides are synthesized by enzymes at the LD surface, with activated fatty acids provided by LD localized ACSL3, thus allowing growth independent of the ER. Here, we tested this hypothesis by quantifying ACSL3 on LDs from human A431 cells. RNAi of ACSL3 reduced the oleoyl-CoA synthetase activity by 83%, suggesting that ACSL3 is by far the dominant enzyme of A431 cells. Molar quantification revealed that there are 1.4 million ACSL3 molecules within a single cell. Metabolic labeling indicated that each ACSL3 molecule contributed a net gain of 3.1 oleoyl-CoA/s. 3D reconstruction of confocal images demonstrated that 530 individual lipid droplets were present in an average oleate fed A431 cell. A representative single lipid droplet with a diameter of 0.66 µm contained 680 ACSL3 molecules on the surface. Subcellular fractionation showed that at least 68% of ACSL3 remain at the ER even during extensive fatty acid supplementation. High resolution single molecule microscopy confirmed the abundance of cytoplasmic ACSL3 outside of LDs. Model calculations for triglyceride synthesis using only LD localized ACSL3 gave significant slower growth of LDs as observed experimentally. In conclusion, although ACSL3 is an abundant enzyme on A431 LDs, the metabolic capacity is not sufficient to account for LD growth solely by the local synthesis of triglycerides.


Assuntos
Coenzima A Ligases/metabolismo , Retículo Endoplasmático/enzimologia , Gotículas Lipídicas/enzimologia , Triglicerídeos/biossíntese , Linhagem Celular Tumoral , Humanos
13.
FASEB J ; 31(11): 4971-4984, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28760743

RESUMO

Recently we identified hypoxia-inducible protein 2 (HIG2)/hypoxia-inducible lipid droplet-associated (HILPDA) as lipid droplet (LD) protein. Because HILPDA is highly expressed in atherosclerotic plaques, we examined its regulation and function in murine macrophages, compared it to the LD adipose differentiation-related protein (Adrp)/perilipin 2 (Plin2), and investigated its effects on atherogenesis in apolipoprotein E-deficient (ApoE-/-) mice. Tie2-Cre-driven Hilpda conditional knockout (cKO) did not affect viability, proliferation, and ATP levels in macrophages. Hilpda proved to be a target of hypoxia-inducible factor 1 (Hif-1) and peroxisome proliferator-activated receptors. In contrast, Adrp/Plin2 was not induced by Hif-1. Hilpda localized to the endoplasmic reticulum-LD interface, the site of LD formation. Hypoxic lipid accumulation and storage of oxidized LDL, cholesteryl esters and triglycerides were abolished in Hilpda cKO macrophages, independent of the glycolytic switch, fatty acid or lipoprotein uptake. Hilpda depletion reduced resistance against lipid overload and increased production of reactive oxygen species after reoxygenation. LPS-stimulated prostaglandin-E2 production was dysregulated in macrophages, demonstrating the substrate buffer and reservoir function of LDs for eicosanoid production. In ApoE-/- Hilpda cKO mice, total aortic plaque area, plaque macrophages and vascular Vegf expression were reduced. Thus, macrophage Hilpda is crucial to foam-cell formation and lipid deposition, and to controlled prostaglandin-E2 production. By these means Hilpda promotes lesion formation and progression of atherosclerosis.-Maier, A., Wu, H., Cordasic, N., Oefner, P., Dietel, B., Thiele, C., Weidemann, A., Eckardt, K.-U., Warnecke, C. Hypoxia-inducible protein 2 Hig2/Hilpda mediates neutral lipid accumulation in macrophages and contributes to atherosclerosis in apolipoprotein E-deficient mice.


Assuntos
Aterosclerose/metabolismo , Células Espumosas/metabolismo , Metabolismo dos Lipídeos , Proteínas de Neoplasias/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/patologia , Dinoprostona/genética , Dinoprostona/metabolismo , Modelos Animais de Doenças , Feminino , Células Espumosas/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Perilipina-2/genética , Perilipina-2/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
14.
Arterioscler Thromb Vasc Biol ; 37(4): 633-642, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28183703

RESUMO

OBJECTIVE: AUP1 (ancient ubiquitous protein 1) is an endoplasmic reticulum-associated protein that also localizes to the surface of lipid droplets (LDs), with dual role in protein quality control and LD regulation. Here, we investigated the role of AUP1 in hepatic lipid mobilization and demonstrate critical roles in intracellular biogenesis of apoB100 (apolipoprotein B-100), LD mobilization, and very-low-density lipoprotein (VLDL) assembly and secretion. APPROACH AND RESULTS: siRNA (short/small interfering RNA) knockdown of AUP1 significantly increased secretion of VLDL-sized apoB100-containing particles from HepG2 cells, correcting a key metabolic defect in these cells that normally do not secrete much VLDL. Secreted particles contained higher levels of metabolically labeled triglyceride, and AUP1-deficient cells displayed a larger average size of LDs, suggesting a role for AUP1 in lipid mobilization. Importantly, AUP1 was also found to directly interact with apoB100, and this interaction was enhanced with proteasomal inhibition. Knockdown of AUP1 reduced apoB100 ubiquitination, decreased intracellular degradation of newly synthesized apoB100, and enhanced extracellular apoB100 secretion. Interestingly, the stimulatory effect of AUP1 knockdown on VLDL assembly was reminiscent of the effect previously observed after MEK-ERK (mitogen-activated protein kinase kinase-extracellular signal-regulated kinase) inhibition; however, further studies indicated that the AUP1 effect was independent of MEK-ERK signaling. CONCLUSIONS: In summary, our findings reveal an important role for AUP1 as a regulator of apoB100 stability, hepatic LD metabolism, and intracellular lipidation of VLDL particles. AUP1 may be a crucial factor in apoB100 quality control, determining the rate at which apoB100 is degraded or lipidated to enable VLDL particle assembly and secretion.


Assuntos
Apolipoproteína B-100/metabolismo , Proteínas de Transporte/metabolismo , Hepatócitos/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/genética , Células Hep G2 , Humanos , Gotículas Lipídicas/metabolismo , Proteínas de Membrana , Tamanho da Partícula , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteólise , Interferência de RNA , Transfecção , Ubiquitinação
15.
Nature ; 481(7382): 525-9, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22230960

RESUMO

Functioning and processing of membrane proteins critically depend on the way their transmembrane segments are embedded in the membrane. Sphingolipids are structural components of membranes and can also act as intracellular second messengers. Not much is known of sphingolipids binding to transmembrane domains (TMDs) of proteins within the hydrophobic bilayer, and how this could affect protein function. Here we show a direct and highly specific interaction of exclusively one sphingomyelin species, SM 18, with the TMD of the COPI machinery protein p24 (ref. 2). Strikingly, the interaction depends on both the headgroup and the backbone of the sphingolipid, and on a signature sequence (VXXTLXXIY) within the TMD. Molecular dynamics simulations show a close interaction of SM 18 with the TMD. We suggest a role of SM 18 in regulating the equilibrium between an inactive monomeric and an active oligomeric state of the p24 protein, which in turn regulates COPI-dependent transport. Bioinformatic analyses predict that the signature sequence represents a conserved sphingolipid-binding cavity in a variety of mammalian membrane proteins. Thus, in addition to a function as second messengers, sphingolipids can act as cofactors to regulate the function of transmembrane proteins. Our discovery of an unprecedented specificity of interaction of a TMD with an individual sphingolipid species adds to our understanding of why biological membranes are assembled from such a large variety of different lipids.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Esfingolipídeos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Biologia Computacional , Sequência Conservada , Cricetinae , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Sistemas do Segundo Mensageiro/fisiologia , Esfingomielinas/metabolismo , Especificidade por Substrato
16.
J Lipid Res ; 58(1): 42-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881717

RESUMO

1-Deoxysphingolipids (deoxySLs) are atypical sphingolipids that are elevated in the plasma of patients with type 2 diabetes and hereditary sensory and autonomic neuropathy type 1 (HSAN1). Clinically, diabetic neuropathy and HSAN1 are very similar, suggesting the involvement of deoxySLs in the pathology of both diseases. However, very little is known about the biology of these lipids and the underlying pathomechanism. We synthesized an alkyne analog of 1-deoxysphinganine (doxSA), the metabolic precursor of all deoxySLs, to trace the metabolism and localization of deoxySLs. Our results indicate that the metabolism of these lipids is restricted to only some lipid species and that they are not converted to canonical sphingolipids or fatty acids. Furthermore, exogenously added alkyne-doxSA [(2S,3R)-2-aminooctadec-17-yn-3-ol] localized to mitochondria, causing mitochondrial fragmentation and dysfunction. The induced mitochondrial toxicity was also shown for natural doxSA, but not for sphinganine, and was rescued by inhibition of ceramide synthase activity. Our findings therefore indicate that mitochondrial enrichment of an N-acylated doxSA metabolite may contribute to the neurotoxicity seen in diabetic neuropathy and HSAN1. Hence, we provide a potential explanation for the characteristic vulnerability of peripheral nerves to elevated levels of deoxySLs.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Neuropatias Diabéticas/sangue , Neuropatias Hereditárias Sensoriais e Autônomas/sangue , Esfingolipídeos/sangue , Animais , Diabetes Mellitus Tipo 2/patologia , Neuropatias Diabéticas/patologia , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Humanos , Lipídeos/sangue , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oxirredutases/metabolismo , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Esfingolipídeos/síntese química , Esfingolipídeos/farmacologia
17.
J Lipid Res ; 57(10): 1934-1947, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27565170

RESUMO

The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Lipídeos/química , Coloração e Rotulagem/métodos , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência/métodos
18.
J Membr Biol ; 249(1-2): 41-56, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26438553

RESUMO

Non-vesicular lipid transport steps play a crucial role in lipid trafficking and potentially include spontaneous exchange. Since membrane contact facilitates this lipid transfer, it is most likely to occur at membrane contact sites (MCS). However, to date it is unknown whether closely attached biological membranes exchange lipids spontaneously. We have set up a system for studying the exchange of lipids at MCS formed between the endoplasmic reticulum (ER) and the plasma membrane. Contact sites were stably anchored and the lipids cholesterol and phosphatidylcholine (PC) were not capable of transferring spontaneously into the opposed bilayer. We conclude that physical contact between two associated biological membranes is not sufficient for transfer of the lipids PC and cholesterol.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Animais , Transporte Biológico , Linhagem Celular Tumoral , Colesterol/metabolismo , Humanos , Microscopia de Fluorescência , Fosfatidilcolinas/metabolismo
19.
Biochim Biophys Acta ; 1841(8): 1031-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24412758

RESUMO

Polyene lipids and alkyne lipids allow study of lipid organization, dynamics and metabolism. Both types of lipids contain multiple bonds as the essential functional group, leading to minimal disturbance of the hydrophobic properties on which the characteristic behavior of lipids is based. Polyene lipids can directly be traced due to their intrinsic fluorescence, while alkyne lipids need the copper-catalyzed click reaction to an azido-reporter for detection. This review describes recent developments in synthesis and application of both types of lipid analogs with emphasis on metabolic tracing and microscopy imaging. This article is part of a Special Issue entitled Tools to study lipid functions.


Assuntos
Lipídeos/química , Alcinos/química , Interações Hidrofóbicas e Hidrofílicas , Polienos/química
20.
Curr Opin Cell Biol ; 20(4): 378-85, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18606534

RESUMO

Lipid storage has attracted much attention in the past years, both by the broader public and the biomedical scientific community. Driven by concerns about the obesity epidemic that affects most industrialized countries and even substantial parts of the population in less and least developed countries, work from researchers of many disciplines has shed light on the genetics, the physiology, and the cellular mechanisms of fat accumulation. This review focuses on the actual organelle of fat deposition, the lipid droplet (LD), and on the recent progress in mechanistic understanding of processes like LD biogenesis, LD growth and degradation, protein targeting to LDs and LD fusion.


Assuntos
Espaço Intracelular/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA