Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(3): 791-806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267661

RESUMO

We herein present for the first time the phosphylated (*) tetrapeptide (TP)-adduct GlyGluSer198*Ala generated from butyrylcholinesterase (BChE) with proteinase K excellently suited for the verification of exposure to toxic organophosphorus nerve agents (OPNA). Verification requires bioanalytical methods mandatory for toxicological and legal reasons. OPNA react with BChE by phosphonylation of the active site serine residue (Ser198) forming one of the major target protein adducts for verification. After its enzymatic cleavage with pepsin, the nonapeptide (NP) PheGlyGluSer*AlaGlyAlaAlaSer is typically produced as biomarker. Usually OPNA occur as racemic mixtures of phosphonic acid derivatives with the stereocenter at the phosphorus atom, e.g. (±)-VX. Both enantiomers react with BChE, but the adducted NP does not allow their chromatographic distinction. In contrast, the herein introduced TP-adducts appeared as two peaks when using a stationary reversed phase (1.8 µm) in micro-liquid chromatography-electrospray ionisation tandem-mass spectrometry (µLC-ESI MS/MS) analysis. These two peaks represent diastereomers of the (+)- and (-)-OPNA adducted to the peptide that comprises chiral L-amino acids exclusively. Concentration- and time-dependent effects of adduct formation with (±)-VX and its pure enantiomers (+)- and (-)-VX as well as with (±)-cyclosarin (GF) were investigated in detail characterising enantioselective adduct formation, stability, ageing and spontaneous reactivation. The method was also successfully applied to samples from a real case of pesticide poisoning as well as to samples of biomedical proficiency tests provided by the Organisation for the Prohibition of Chemical Weapons.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Compostos Organotiofosforados , Butirilcolinesterase/metabolismo , Espectrometria de Massas em Tandem/métodos , Compostos Organotiofosforados/toxicidade , Compostos Organofosforados/toxicidade , Agentes Neurotóxicos/toxicidade , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/química
2.
Arch Toxicol ; 97(2): 429-439, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36371551

RESUMO

Transient receptor potential (TRP) channels are important in the sensing of pain and other stimuli. They may be triggered by electrophilic agonists after covalent modification of certain cysteine residues. Sulfur mustard (SM) is a banned chemical warfare agent and its reactivity is also based on an electrophilic intermediate. The activation of human TRP ankyrin 1 (hTRPA1) channels by SM has already been documented, however, the mechanism of action is not known in detail. The aim of this work was to purify hTRPA1 channel from overexpressing HEK293 cells for identification of SM-induced alkylation sites. To confirm hTRPA1 isolation, Western blot analysis was performed showing a characteristic double band at 125 kDa. Immunomagnetic separation was carried out using either an anti-His-tag or an anti-hTRPA1 antibody to isolate hTRPA1 from lysates of transfected HEK293 cells. The identity of the channel was confirmed by micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry. Following SM exposure, hTRPA1 channel modifications were found at Cys462 and Cys665, as well as at Asp339 and Glu341 described herein for the first time. Since Cys665 is a well-known target of hTRPA1 agonists and is involved in hTRPA1 activation, SM-induced modifications of cysteine, as well as aspartic acid and glutamic acid residues may play a role in hTRPA1 activation. Considering hTRPA1 as a target of other SM-related chemical warfare agents, analogous adducts may be predicted and identified applying the analytical approach described herein.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Humanos , Gás de Mostarda/toxicidade , Gás de Mostarda/química , Canal de Cátion TRPA1/genética , Células HEK293 , Cisteína , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/química , Alquilação
3.
Arch Toxicol ; 97(7): 1873-1885, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264164

RESUMO

VX is a highly toxic organophosphorus nerve agent that reacts with a variety of endogenous proteins such as serum albumin under formation of adducts that can be targeted by analytical methods for biomedical verification of exposure. Albumin is phosphonylated by the ethyl methylphosphonic acid moiety (EMP) of VX at various tyrosine residues. Additionally, the released leaving group of VX, 2-(diisopropylamino)ethanethiol (DPAET), may react with cysteine residues in diverse proteins. We developed and validated a microbore liquid chromatography-electrospray ionization high-resolution tandem mass spectrometry (µLC-ESI MS/HR MS) method enabling simultaneous detection of three albumin-derived biomarkers for the analysis of rat plasma. After pronase-catalyzed cleavage of rat plasma proteins single phosphonylated tyrosine residues (Tyr-EMP), the Cys34(-DPAET)Pro dipeptide as well as the rat-specific LeuProCys448(-DPAET) tripeptide were obtained. The time-dependent adduct formation in rat plasma was investigated in vitro and biomarker formation during proteolysis was optimized. Biomarkers were shown to be stable for a minimum of four freeze-and-thaw cycles and for at least 24 h in the autosampler at 15 °C thus making the adducts highly suited for bioanalysis. Cys34(-DPAET)Pro was superior compared to the other serum biomarkers considering the limit of identification and stability in plasma at 37 °C. For the first time, Cys34(-DPAET)Pro was detected in in vivo specimens showing a time-dependent concentration increase after subcutaneous exposure of rats underlining the benefit of the dipeptide disulfide biomarker for sensitive analysis.


Assuntos
Agentes Neurotóxicos , Animais , Ratos , Agentes Neurotóxicos/toxicidade , Agentes Neurotóxicos/química , Albumina Sérica Humana/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Compostos Organofosforados , Dipeptídeos , Biomarcadores , Tirosina
4.
Anal Chem ; 94(4): 2048-2055, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041786

RESUMO

Organophosphorus (OP) nerve agents were used for chemical warfare, assassination, and attempted murder of individuals. Therefore, forensic methods are required to identify known and unknown incorporated OP poisons. Serum is tested for the presence of covalent reaction products (adducts) of the toxicant with, e.g., butyrylcholinesterase (BChE) typically by targeted analysis, thus only detecting known OP adducts. We herein present a nontargeted two-step mass spectrometry (MS)-based workflow taking advantage of a high-resolution (HR) Orbitrap mass spectrometer and its option for in-source collision-induced dissociation (IS-CID) highly valuable for the detection of unknown agents. BChE adducts are extracted by immunomagnetic separation and proteolyzed with pepsin yielding a phosphylated nonapeptide (NP) biomarker NP(OP). In step 1, the sample is separated by micro liquid chromatography (µLC) detecting the NP(OP) by nontargeted HR MS followed by data-dependent tandem-MS (ddMS2). Extracted ion chromatograms of diagnostic product ions at m/z 778.33661, 673.29402, and 602.25690 reveal the accurate mass of the NP(OP) precursor ion as well as the elemental composition of the adducted phosphyl moiety. Considering this information, a second µLC run is performed (step 2) for nonselective IS-CID of NP(OP) yielding the cleaved charged phosphyl moiety. This fragment ion is immediately subjected to targeted CID in parallel reaction monitoring (PRM). The accurate mass of its product ions allows the determination of their elemental composition and thus supports its structural elucidation. The described workflow was exemplarily applied to NP(OP) of three Tamelin esters and VX providing highly appropriate abilities for the detection of adducts even of unknown OP poisons like Novichok agents.


Assuntos
Butirilcolinesterase , Agentes Neurotóxicos , Humanos , Separação Imunomagnética , Agentes Neurotóxicos/química , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho
5.
Br J Clin Pharmacol ; 88(12): 5064-5069, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35023196

RESUMO

In poisoning with organophosphorus compounds (OP), patients can only profit from the regeneration of acetylcholinesterase, when the poison load has dropped below a toxic level. Every measure that allows an increase of synaptic acetylcholinesterase (AChE) activity at the earliest is essential for timely termination of the cholinergic crisis. Only drug-induced reactivation allows fast restoration of the inhibited AChE. Obidoxime and pralidoxime have proved to be able to reactivate inhibited cholinesterase thereby saving life of poisoned animals. A plasma level of obidoxime or pralidoxime allowing reactivation in humans poisoned by OP can be adjusted. There is no doubt that obidoxime and pralidoxime are able to reactivate OP-inhibited AChE activity in poisoned patients, thereby increasing AChE activity and contributing substantially to terminate cholinergic crisis. Hence, a benefit may be expected when substantial reactivation is achieved. A test system allowing determination of red blood cell AChE activity, reactivatability, inhibitory equivalents and butyrylcholinesterase activity is available for relatively low cost. If any reactivation is possible while inhibiting equivalents are present, oxime therapy should be maintained. In particular, when balancing the benefit risk assessment, obidoxime or palidoxime should be given as soon as possible and as long as a substantial reactivation may be expected.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Humanos , Animais , Intoxicação por Organofosfatos/tratamento farmacológico , Oximas/uso terapêutico , Cloreto de Obidoxima/farmacologia , Cloreto de Obidoxima/uso terapêutico , Acetilcolinesterase , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/farmacologia , Butirilcolinesterase , Inibidores da Colinesterase
6.
Arch Toxicol ; 96(1): 321-334, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34778934

RESUMO

Organophosphorus compound pesticides (OP) are widely used in pest control and might be misused for terrorist attacks. Although acetylcholinesterase (AChE) inhibition is the predominant toxic mechanism, OP may induce pneumonia and formation of lung edema after poisoning and during clinical treatment as life-threatening complication. To investigate the underlying mechanisms, rat precision-cut lung slices (PCLS) were exposed to the OP parathion, malathion and their biotransformation products paraoxon and malaoxon (100-2000 µmol/L). Airway response, metabolic activity, release of LDH, cytokine expression and oxidative stress response were analyzed. A concentration-dependent inhibition of airway relaxation was observed after exposure with the oxon but not with the thion-OP. In contrast, cytotoxic effects were observed for both forms in higher concentrations. Increased cytokine expression was observed after exposure to parathion and paraoxon (IL-6, GM-CSF, MIP-1α) and IL-6 expression was dependent on NFκB activation. Intracellular GSH levels were significantly reduced by all four tested OP but an increase in GSSG and HO-1 expression was predominantly observed after malaoxon exposure. Pretreatment with the antioxidant N-acetylcysteine reduced malaoxon but not paraoxon-induced cytotoxicity. PCLS as a 3D lung model system revealed OP-induced effects depending on the particular OP. The experimental data of this study contribute to a better understanding of OP toxicity on cellular targets and may be a possible explanation for the variety of clinical outcomes induced by different OP.


Assuntos
Praguicidas , Acetilcolinesterase , Animais , Antioxidantes/farmacologia , Pulmão , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Ratos
7.
Arch Toxicol ; 96(8): 2287-2298, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35570235

RESUMO

In the recent past, the blister agent sulfur mustard (SM) deployed by the terroristic group Islamic State has caused a huge number of civilian and military casualties in armed conflicts in the Middle East. The vaporized or aerolized agent might be inhaled and have direct contact to skin and hair. Reaction products of SM with plasma proteins (adducts) represent well-established systemic targets for the bioanalytical verification of exposure. The SM-derived hydroxyethylthioethyl (HETE)-moiety is attached to nucleophilic amino acid side chains and allows unambiguous adduct detection. For shipping of common blood and plasma samples, extensive packaging rules are to be followed as these matrices are considered as potentially infectious material. In contrast, hair is considered as non-infectious thus making its handling and transportation much less complicated. Therefore, we addressed this matrix to develop a procedure for bioanalytical verification. Following optimized lysis of SM-treated human scalp hair and pepsin-catalyzed proteolysis of adducts of keratin type I and II, microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HR MS) was used to detect three alkylated keratin-derived biomarker peptides: AE(-HETE)IRSDL, FKTIE(-HETE)EL, and LE(-HETE)TKLQF simultaneously. All bear the HETE-moiety bound to a glutamic acid residue. Protein adducts were stable for at least 14 weeks at ambient temperature and contact to air, and were not affected by washing the hair with shampoo. The biomarker peptides were also obtained from beard, armpit, abdominal, and pubic hair. This is the first report introducing stable local peptide adduct biomarkers from hair, that is easily accessible by a non-invasive sampling process.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Biomarcadores , Substâncias para a Guerra Química/química , Cabelo/química , Humanos , Ácidos Hidroxieicosatetraenoicos , Queratinas , Gás de Mostarda/química , Gás de Mostarda/toxicidade , Peptídeos , Albumina Sérica Humana/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem/métodos
8.
Arch Toxicol ; 96(11): 3053-3066, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35906424

RESUMO

Chronic wounds, skin blisters, and ulcers are the result of skin exposure to the alkylating agent sulfur mustard (SM). One potential pathomechanism is senescence, which causes permanent growth arrest with a pro-inflammatory environment and may be associated with a chronic wound healing disorder. SM is known to induce chronic senescence in human mesenchymal stem cells which are subsequently unable to fulfill their regenerative function in the wound healing process. As dermal fibroblasts are crucial for cutaneous wound healing by being responsible for granulation tissue formation and synthesis of the extracellular matrix, SM exposure might also impair their function in a similar way. This study, therefore, investigated the SM sensitivity of primary human dermal fibroblasts (HDF) by determining the dose-response curve. Non-lethal concentrations LC1 (3 µM) to LC25 (65 µM) were used to examine the induction of senescence. HDF were exposed once to 3 µM, 13 µM, 24 µM, 40 µM or 65 µM SM, and were then cultured for 31 days. Changes in morphology as well as at the genetic and protein level were investigated. For the first time, HDF were shown to undergo senescence in a time- and concentration-dependent manner after SM exposure. They developed a characteristic senescence phenotype and expressed various senescence markers. Proinflammatory cytokines and chemokines were significantly altered in SM-exposed HDF as part of a senescence-associated secretory phenotype. The senescent fibroblasts can thus be considered a contributor to the SM-induced chronic wound healing disorder and might serve as a new therapeutic target in the future.


Assuntos
Gás de Mostarda , Alquilantes , Senescência Celular , Citocinas , Fibroblastos , Humanos , Gás de Mostarda/toxicidade , Pele
9.
Arch Toxicol ; 96(2): 571-583, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34962578

RESUMO

The biologically stable and highly toxic organophosphorus nerve agent (OP) VX poses a major health threat. Standard medical therapy, consisting of reactivators and competitive muscarinic receptor antagonists, is insufficient. Recently, two engineered mutants of the Brevundimonas diminuta phosphotriesterase (PTE) with enhanced catalytic efficiency (kcat/KM = 21 to 38 × 106 M-1 min-1) towards VX and a preferential hydrolysis of the more toxic P(-) enantiomer were described: PTE-C23(R152E)-PAS(100)-10-2-C3(I106A/C59V/C227V/E71K)-PAS(200) (PTE-2), a single-chain bispecific enzyme with a PAS linker and tag having enlarged substrate spectrum, and 10-2-C3(C59V/C227V)-PAS(200) (PTE-3), a stabilized homodimeric enzyme with a double PASylation tag (PAS-tag) to reduce plasma clearance. To assess in vivo efficacy, these engineered enzymes were tested in an anesthetized rat model post-VX exposure (~ 2LD50) in comparison with the recombinant wild-type PTE (PTE-1), dosed at 1.0 mg kg-1 i.v.: PTE-2 dosed at 1.3 mg kg-1 i.v. (PTE-2.1) and 2.6 mg kg-1 i.v. (PTE-2.2) and PTE-3 at 1.4 mg kg-1 i.v. Injection of the mutants PTE-2.2 and PTE-3, 5 min after s.c. VX exposure, ensured survival and prevented severe signs of a cholinergic crisis. Inhibition of erythrocyte acetylcholinesterase (AChE) could not be prevented. However, medulla oblongata and diaphragm AChE activity was partially preserved. All animals treated with the wild-type enzyme, PTE-1, showed severe cholinergic signs and died during the observation period of 180 min. PTE-2.1 resulted in the survival of all animals, yet accompanied by severe signs of OP poisoning. This study demonstrates for the first time efficient detoxification in vivo achieved with low doses of heterodimeric PTE-2 as well as PTE-3 and indicates the suitability of these engineered enzymes for the development of highly effective catalytic scavengers directed against VX.


Assuntos
Substâncias para a Guerra Química/toxicidade , Compostos Organotiofosforados/toxicidade , Hidrolases de Triester Fosfórico/farmacologia , Animais , Caulobacteraceae/enzimologia , Inibidores da Colinesterase/toxicidade , Masculino , Hidrolases de Triester Fosfórico/química , Hidrolases de Triester Fosfórico/genética , Engenharia de Proteínas , Ratos , Ratos Wistar , Estereoisomerismo
10.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1023-L1035, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643087

RESUMO

Precision-cut lung slices (PCLS) are used as ex vivo model of the lung to fill the gap between in vitro and in vivo experiments. To allow optimal utilization of PCLS, possibilities to prolong slice viability via cold storage using optimized storage solutions were evaluated. Rat PCLS were cold stored in DMEM/F-12 or two different preservation solutions for up to 28 days at 4°C. After rewarming in DMEM/F-12, metabolic activity, live/dead staining, and mitochondrial membrane potential was assessed to analyze overall tissue viability. Single-cell suspensions were prepared and proportions of CD45+, EpCAM+, CD31+, and CD90+ cells were analyzed. As functional parameters, TNF-α expression was analyzed to detect inflammatory activity and bronchoconstriction was evaluated after acetylcholine stimulus. After 14 days of cold storage, viability and mitochondrial membrane potential were significantly better preserved after storage in solution 1 (potassium chloride rich) and solution 2 (potassium- and lactobionate-rich analog) compared with DMEM/F-12. Analysis of cell populations revealed efficient preservation of EpCAM+, CD31+, and CD90+ cells. Proportion of CD45+ cells decreased during cold storage but was better preserved by both modified solutions than by DMEM/F-12. PCLS stored in solution 1 responded substantially longer to inflammatory stimulation than those stored in DMEM/F-12 or solution 2. Analysis of bronchoconstriction revealed total loss of function after 14 days of storage in DMEM/F-12 but, in contrast, a good response in PCLS stored in the optimized solutions. An improved base solution with a high potassium chloride concentration optimizes cold storage of PCLS and allows shipment between laboratories and stockpiling of tissue samples.


Assuntos
Temperatura Baixa , Criopreservação/métodos , Pulmão/fisiologia , Potencial da Membrana Mitocondrial , Soluções para Preservação de Órgãos/química , Preservação de Tecido/métodos , Sobrevivência de Tecidos , Animais , Masculino , Ratos , Ratos Wistar
11.
Anal Bioanal Chem ; 413(19): 4907-4916, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34215915

RESUMO

Sulfur mustard (SM) is a banned chemical warfare agent recently used in the Syrian Arab Republic conflict causing erythema and blisters characterized by complicated and delayed wound healing. For medical and legal reasons, the proof of exposure to SM is of high toxicological and forensic relevance. SM reacts with endogenous human serum albumin (HSA adducts) alkylating the thiol group of the cysteine residue C34, thus causing the addition of the hydroxyethylthioethyl (HETE) moiety. Following proteolysis with pronase, the biomarker dipeptide C(-HETE)P is produced. To expand the possibilities for verification of exposure, we herein introduce a novel biomarker produced from that alkylated dipeptide by derivatization with propionic anhydride inducing the selective propionylation of the N-terminus yielding PA-C(-HETE)P. Quantitative derivatization is carried out at room temperature in aqueous buffer within 10 s. The biomarker was found to be stable in the autosampler at 15 °C for at least 24 h, thus documenting its suitability even for larger sets of samples. Selective and sensitive detection is done by micro liquid chromatography-electrospray ionization tandem-mass spectrometry (µLC-ESI MS/MS) operating in the selected reaction monitoring (SRM) mode detecting product ions of the single protonated PA-C(-HETE)P (m/z 379.1) at m/z 116.1, m/z 137.0, and m/z 105.0. The lower limit of detection corresponds to 32 nM SM in plasma in vitro and the limit of identification to 160 nM. The applicability to real exposure scenarios was proven by analyzing samples from the Middle East confirming poisoning with SM.


Assuntos
Albuminas/química , Anidridos/química , Substâncias para a Guerra Química/intoxicação , Dipeptídeos/química , Gás de Mostarda/intoxicação , Propionatos/química , Alquilação , Biomarcadores , Humanos
12.
Arch Toxicol ; 95(8): 2815-2823, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160649

RESUMO

Highly toxic organophosphorus nerve agents, especially the extremely stable and persistent V-type agents such as VX, still pose a threat to the human population and require effective medical countermeasures. Engineered mutants of the Brevundimonas diminuta phosphotriesterase (BdPTE) exhibit enhanced catalytic activities and have demonstrated detoxification in animal models, however, substrate specificity and fast plasma clearance limit their medical applicability. To allow better assessment of their substrate profiles, we have thoroughly investigated the catalytic efficacies of five BdPTE mutants with 17 different nerve agents using an AChE inhibition assay. In addition, we studied one BdPTE version that was fused with structurally disordered PAS polypeptides to enable delayed plasma clearance and one bispecific BdPTE with broadened substrate spectrum composed of two functionally distinct subunits connected by a PAS linker. Measured kcat/KM values were as high as 6.5 and 1.5 × 108 M-1 min-1 with G- and V-agents, respectively. Furthermore, the stereoselective degradation of VX enantiomers by the PASylated BdPTE-4 and the bispecific BdPTE-7 were investigated by chiral LC-MS/MS, resulting in a several fold faster hydrolysis of the more toxic P(-) VX stereoisomer compared to P(+) VX. In conclusion, the newly developed enzymes BdPTE-4 and BdPTE-7 have shown high catalytic efficacy towards structurally different nerve agents and stereoselectivity towards the toxic P(-) VX enantiomer in vitro and offer promise for use as bioscavengers in vivo.


Assuntos
Caulobacteraceae/enzimologia , Agentes Neurotóxicos/metabolismo , Hidrolases de Triester Fosfórico/metabolismo , Catálise , Cromatografia Líquida , Hidrólise , Mutação , Agentes Neurotóxicos/química , Agentes Neurotóxicos/toxicidade , Hidrolases de Triester Fosfórico/genética , Estereoisomerismo , Especificidade por Substrato , Espectrometria de Massas em Tandem
13.
Arch Toxicol ; 95(4): 1323-1333, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33635393

RESUMO

Sulfur mustard (SM) is a chemical warfare agent which use is banned under international law and that has been used recently in Northern Iraq and Syria by the so-called Islamic State. SM induces the alkylation of endogenous proteins like albumin and hemoglobin thus forming covalent adducts that are targeted by bioanalytical methods for the verification of systemic poisoning. We herein report a novel biomarker, namely creatine kinase (CK) B-type, suitable as a local biomarker for SM exposure on the skin. Human and rat skin were proven to contain CK B-type by Western blot analysis. Following exposure to SM ex vivo, the CK-adduct was extracted from homogenates by immunomagnetic separation and proteolyzed afterwards. The cysteine residue Cys282 was found to be alkylated by the SM-specific hydroxyethylthioethyl (HETE)-moiety detected as the biomarker tetrapeptide TC(-HETE)PS. A selective and sensitive micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HRMS) method was developed to monitor local CK-adducts in an in vivo study with rats percutaneously exposed to SM. CK-adduct formation was compared to already established DNA- and systemic albumin biomarkers. CK- and DNA-adducts were successfully detected in biopsies of exposed rat skin as well as albumin-adducts in plasma. Relative biomarker concentrations make the CK-adduct highly appropriate as a local dermal biomarker. In summary, CK or rather Cys282 in CK B-type was identified as a new, additional dermal target of local SM exposures. To our knowledge, it is also the first time that HETE-albumin adducts, and HETE-DNA adducts were monitored simultaneously in an in vivo animal study.


Assuntos
Substâncias para a Guerra Química/toxicidade , Creatina Quinase/metabolismo , Gás de Mostarda/toxicidade , Pele/efeitos dos fármacos , Albuminas/metabolismo , Alquilação/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Cromatografia Líquida , Cisteína/metabolismo , Adutos de DNA/metabolismo , Humanos , Masculino , Ratos , Ratos Wistar , Pele/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
14.
Arch Toxicol ; 95(10): 3253-3261, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34396457

RESUMO

Creatine kinase (CK) catalyzes the formation of phosphocreatine from adenosine triphosphate (ATP) and creatine. The highly reactive free cysteine residue in the active site of the enzyme (Cys283) is considered essential for the enzymatic activity. In previous studies we demonstrated that Cys283 is targeted by the alkylating chemical warfare agent sulfur mustard (SM) yielding a thioether with a hydroxyethylthioethyl (HETE)-moiety. In the present study, the effect of SM on rabbit muscle CK (rmCK) activity was investigated with special focus on the alkylation of Cys283 and of reactive methionine (Met) residues. For investigation of SM-alkylated amino acids in rmCK, micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry measurements were performed using the Orbitrap technology. The treatment of rmCK with SM resulted in a decrease of enzyme activity. However, this decrease did only weakly correlate to the modification of Cys283 but was conclusive for the formation of Met70-HETE and Met179-HETE. In contrast, the activity of mutants of rmCK produced by side-directed mutagenesis that contained substitutions of the respective Met residues (Met70Ala, Met179Leu, and Met70Ala/Met179Leu) was highly resistant against SM. Our results point to a critical role of the surface exposed Met70 and Met179 residues for CK activity.


Assuntos
Substâncias para a Guerra Química/toxicidade , Creatina Quinase Forma MM/efeitos dos fármacos , Metionina/metabolismo , Gás de Mostarda/toxicidade , Alquilação/efeitos dos fármacos , Animais , Cromatografia Líquida , Creatina Quinase Forma MM/metabolismo , Cisteína/metabolismo , Coelhos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
15.
Arch Toxicol ; 95(2): 727-747, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33491125

RESUMO

Wound healing is a complex process, and disturbance of even a single mechanism can result in chronic ulcers developing after exposure to the alkylating agent sulfur mustard (SM). A possible contributor may be SM-induced chronic senescent mesenchymal stem cells (MSCs), unable to fulfil their regenerative role, by persisting over long time periods and creating a proinflammatory microenvironment. Here we show that senescence induction in human bone marrow derived MSCs was time- and concentration-dependent, and chronic senescence could be verified 3 weeks after exposure to between 10 and 40 µM SM. Morphological changes, reduced clonogenic and migration potential, longer scratch closure times, differences in senescence, motility and DNA damage response associated genes as well as increased levels of proinflammatory cytokines were revealed. Selective removal of these cells by senolytic drugs, in which ABT-263 showed initial potential in vitro, opens the possibility for an innovative treatment strategy for chronic wounds, but also tumors and age-related diseases.


Assuntos
Senescência Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Citocinas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Gás de Mostarda/toxicidade , Cicatrização/efeitos dos fármacos , Alquilantes/toxicidade , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Substâncias para a Guerra Química/toxicidade , Quimiocinas/genética , Citocinas/genética , Humanos , Peróxido de Hidrogênio/toxicidade , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pele/efeitos dos fármacos , Pele/lesões
16.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498964

RESUMO

Sulfur mustard (SM) is a chemical warfare agent that can damage DNA via alkylation and oxidative stress. Because of its genotoxicity, SM is cancerogenic and the progenitor of many chemotherapeutics. Previously, we developed an SM-resistant cell line via chronic exposure of the popular keratinocyte cell line HaCaT to increasing doses of SM over a period of 40 months. In this study, we compared the genomic landscape of the SM-resistant cell line HaCaT/SM to its sensitive parental line HaCaT in order to gain insights into genetic changes associated with continuous alkylation and oxidative stress. We established chromosome numbers by cytogenetics, analyzed DNA copy number changes by means of array Comparative Genomic Hybridization (array CGH), employed the genome-wide chromosome conformation capture technique Hi-C to detect chromosomal translocations, and derived mutational signatures by whole-genome sequencing. We observed that chronic SM exposure eliminated the initially prevailing hypotetraploid cell population in favor of a hyperdiploid one, which contrasts with previous observations that link polyploidization to increased tolerance and adaptability toward genotoxic stress. Furthermore, we observed an accumulation of chromosomal translocations, frequently flanked by DNA copy number changes, which indicates a high rate of DNA double-strand breaks and their misrepair. HaCaT/SM-specific single-nucleotide variants showed enrichment of C > A and T > A transversions and a lower rate of deaminated cytosines in the CpG dinucleotide context. Given the frequent use of HaCaT in toxicology, this study provides a valuable data source with respect to the original genotype of HaCaT and the mutational signatures associated with chronic alkylation and oxidative stress.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA , Queratinócitos/efeitos dos fármacos , Gás de Mostarda/toxicidade , Mutação , Radiação Ionizante , Alquilantes/farmacologia , Alquilantes/toxicidade , Linhagem Celular , Aberrações Cromossômicas/efeitos da radiação , Hibridização Genômica Comparativa , DNA/efeitos dos fármacos , DNA/metabolismo , DNA/efeitos da radiação , Adutos de DNA , Quebras de DNA de Cadeia Dupla , Humanos , Gás de Mostarda/farmacologia , Estresse Oxidativo
17.
Anal Bioanal Chem ; 412(28): 7723-7737, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32902690

RESUMO

Apart from the well-known sulfur mustard (SM), additional sulfur-containing blistering chemical warfare agents exist. Sesquimustard (Q) is one of them and five times more blistering than SM. It is a common impurity in mustard mixtures and regularly found in old munitions but can also be used in pure form. Compared to the extensive literature on SM, very little experimental data is available on Q and no protein biomarkers of exposure have been reported. We herein report for the first time the adduct of Q with the nucleophilic Cys34 residue of human serum albumin (HSA) formed in vitro and introduce two novel bioanalytical procedures for detection. After proteolysis of this HSA adduct catalyzed either by pronase or by proteinase K, two biomarkers were identified by high-resolution tandem mass spectrometry (MS/HR MS), namely a dipeptide and a tripeptide, both alkylated at their Cys residue, which we refer to as HETETE-CP and HETETE-CPF. HETETE represents the Q-derived thio-alkyl moiety bearing a terminal hydroxyl group: "hydroxyethylthioethylthioethyl." Targeting both peptide markers from plasma, a micro liquid chromatography-electrospray ionization tandem mass spectrometry method working in the selected reaction monitoring mode (µLC-ESI MS/MS SRM) was developed and validated as well suited for the verification of exposure to Q. Fulfilling the quality criteria defined by the Organisation for the Prohibition of Chemical Weapons, the novel methods enable the detection of exposure to Q alone or in mixtures with SM. We further report on the relative reactivity of Q compared to SM. Based on experiments making use of partially deuterated Q as the alkylating agent, we rule out a major role for six-membered ring sulfonium ions as relevant reactive species in the alkylation of Cys34. Furthermore, the results of molecular dynamics simulations are indicative that the protein environment around Cys34 allows adduct formation with elongated but not bulky molecules such as Q, and identify important hydrogen bonding interactions and hydrophobic contacts. Graphical abstract.


Assuntos
Vesícula/induzido quimicamente , Substâncias para a Guerra Química/química , Compostos de Mostarda/química , Albumina Sérica Humana/química , Alquilação , Biomarcadores/sangue , Substâncias para a Guerra Química/toxicidade , Humanos , Compostos de Mostarda/toxicidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
18.
Arch Toxicol ; 94(7): 2275-2292, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32506210

RESUMO

Organophosphorus (OP) pesticides and nerve agents still pose a threat to the population. Treatment of OP poisoning is an ongoing challenge and burden for medical services. Standard drug treatment consists of atropine and an oxime as reactivator of OP-inhibited acetylcholinesterase and is virtually unchanged since more than six decades. Established oximes, i.e. pralidoxime, obidoxime, TMB-4, HI-6 and MMB-4, are of insufficient effectiveness in some poisonings and often cover only a limited spectrum of the different nerve agents and pesticides. Moreover, the value of oximes in human OP pesticide poisoning is still disputed. Long-lasting research efforts resulted in the preparation of countless experimental oximes, and more recently non-oxime reactivators, intended to replace or supplement the established and licensed oximes. The progress of this development is slow and none of the novel compounds appears to be suitable for transfer into advanced development or into clinical use. This situation calls for a critical analysis of the value of oximes as mainstay of treatment as well as the potential and limitations of established and novel reactivators. Requirements for a straightforward identification of superior reactivators and their development to licensed drugs need to be addressed as well as options for interim solutions as a chance to improve the therapy of OP poisoning in a foreseeable time frame.


Assuntos
Antídotos/uso terapêutico , Atropina/uso terapêutico , Reativadores da Colinesterase/uso terapêutico , Agentes Neurotóxicos/intoxicação , Intoxicação por Organofosfatos/tratamento farmacológico , Organofosfonatos/efeitos adversos , Oximas/uso terapêutico , Praguicidas/intoxicação , Animais , Antídotos/efeitos adversos , Atropina/efeitos adversos , Reativadores da Colinesterase/efeitos adversos , Humanos , Intoxicação por Organofosfatos/diagnóstico , Intoxicação por Organofosfatos/fisiopatologia , Oximas/efeitos adversos , Resultado do Tratamento
19.
Molecules ; 25(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630769

RESUMO

The implementation of the Chemical Weapons Convention (CWC) in 1997 was a milestone in the prohibition of chemical warfare agents (CWA). Yet, the repeated use of CWA underlines the ongoing threat to the population. Organophosphorus (OP) nerve agents still represent the most toxic CWA subgroup. Defensive research on nerve agents is mainly focused on the "classical five", namely tabun, sarin, soman, cyclosarin and VX, although Schedule 1 of the CWC covers an unforeseeable number of homologues. Likewise, an uncounted number of OP pesticides have been produced in previous decades. Our aim was to determine the in vitro inhibition kinetics of selected organophosphono- and organophosphorothioates with human AChE, as well as hydrolysis of the agents in human plasma and reactivation of inhibited AChE, in order to derive potential structure-activity relationships. The investigation of the interactions of selected OP compounds belonging to schedule 1 (V-agents) and schedule 2 (amiton) of the CWC with human AChE revealed distinct structural effects of the P-alkyl, P-O-alkyl and N,N-dialkyl residues on the inhibitory potency of the agents. Irrespective of structural modifications, all tested V-agents presented as highly potent AChE inhibitors. The high stability of the tested agents in human plasma will most likely result in long-lasting poisoning in vivo, having relevant consequences for the treatment regimen. In conclusion, the results of this study emphasize the need to investigate the biological effects of nerve agent analogues in order to assess the efficacy of available medical countermeasures.


Assuntos
Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Compostos Organotiofosforados/química , Compostos Organotiofosforados/farmacologia , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/sangue , Inibidores da Colinesterase/farmacocinética , Reativadores da Colinesterase/farmacologia , Estabilidade de Medicamentos , Humanos , Agentes Neurotóxicos/química , Agentes Neurotóxicos/farmacologia , Cloreto de Obidoxima/química , Cloreto de Obidoxima/farmacologia , Compostos Organotiofosforados/sangue , Compostos Organotiofosforados/farmacocinética , Relação Estrutura-Atividade
20.
Rapid Commun Mass Spectrom ; 33(3): 259-271, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30402977

RESUMO

RATIONALE: Dimethoate (DIM, S=P(OMe)2 -S-CH2 -C(O)-NH-CH3 ) is a dimethyl phosphorodithioate pesticide widely used in agri- and horticulture that undergoes biotransformation in vivo by desulfuration into its more toxic oxono-derivative omethoate (OM, O=P(OMe)2 -S-CH2 -C(O)-NH-CH3 ). OM inhibits acetylcholinesterase thus provoking cholinergic crisis in vivo, ultimately leading to death. Quantitative approaches for the determination of DIM and OM in environmental and toxicological samples make use of tandem mass spectrometry (MS2 ). Nevertheless, so far interpretation of resulting product ions is incomplete and sometimes contradictory. METHODS: DIM and OM as well as their deuterated analogues (fully deuterated at both methoxy groups bound to the phosphorus atom) were analyzed by MS2 and MS3 after positive electrospray ionization and collision-induced dissociation (CID) in a linear ion trap to characterize fragmentations. The accurate masses of product ions were determined in a time-of-flight mass analyzer. Hydrogen/deuterium (H/D)-exchange experiments were carried out for further support of product ion identification. In addition, density functional theory (DFT) computations were used to calculate both the most stable protonation sites of DIM and OM and the changes in the diverse bond lengths after protonation. RESULTS: Some identical and some related product ions of DIM and OM were found but also striking individual differences. Fragmentation pathways were proposed and product ions identified. Most fragmentations followed the common rules of charge migration fragmentation. DFT calculations supported experimental findings. CONCLUSIONS: Discrepancies present in the literature so far are clarified and a deeper insight is provided into the fragmentation processes of organophosphorus pesticides. The combination of diverse experimental and theoretical approaches yielded consistent results, thus demonstrating continuous progress in understanding gas-phase reactions in MS experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA