Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558233

RESUMO

We conducted a meta-analysis of carbon and oxygen isotopes from tree ring chronologies representing 34 species across 10 biomes to better understand the environmental drivers and physiological mechanisms leading to historical changes in tree intrinsic water use efficiency (iWUE), or the ratio of net photosynthesis (Anet) to stomatal conductance (gs), over the last century. We show a ∼40% increase in tree iWUE globally since 1901, coinciding with a ∼34% increase in atmospheric CO2 (Ca), although mean iWUE, and the rates of increase, varied across biomes and leaf and wood functional types. While Ca was a dominant environmental driver of iWUE, the effects of increasing Ca were modulated either positively or negatively by climate, including vapor pressure deficit (VPD), temperature, and precipitation, and by leaf and wood functional types. A dual carbon-oxygen isotope approach revealed that increases in Anet dominated the observed increased iWUE in ∼83% of examined cases, supporting recent reports of global increases in Anet, whereas reductions in gs occurred in the remaining ∼17%. This meta-analysis provides a strong process-based framework for predicting changes in tree carbon gain and water loss across biomes and across wood and leaf functional types, and the interactions between Ca and other environmental factors have important implications for the coupled carbon-hydrologic cycles under future climate. Our results furthermore challenge the idea of widespread reductions in gs as the major driver of increasing tree iWUE and will better inform Earth system models regarding the role of trees in the global carbon and water cycles.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Mudança Climática , Transpiração Vegetal , Árvores/fisiologia , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Oxigênio/análise , Oxigênio/metabolismo
2.
Glob Chang Biol ; 29(12): 3449-3462, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36897273

RESUMO

Trees continuously regulate leaf physiology to acquire CO2 while simultaneously avoiding excessive water loss. The balance between these two processes, or water use efficiency (WUE), is fundamentally important to understanding changes in carbon uptake and transpiration from the leaf to the globe under environmental change. While increasing atmospheric CO2 (iCO2 ) is known to increase tree intrinsic water use efficiency (iWUE), less clear are the additional impacts of climate and acidic air pollution and how they vary by tree species. Here, we couple annually resolved long-term records of tree-ring carbon isotope signatures with leaf physiological measurements of Quercus rubra (Quru) and Liriodendron tulipifera (Litu) at four study locations spanning nearly 100 km in the eastern United States to reconstruct historical iWUE, net photosynthesis (Anet ), and stomatal conductance to water (gs ) since 1940. We first show 16%-25% increases in tree iWUE since the mid-20th century, primarily driven by iCO2 , but also document the individual and interactive effects of nitrogen (NOx ) and sulfur (SO2 ) air pollution overwhelming climate. We find evidence for Quru leaf gas exchange being less tightly regulated than Litu through an analysis of isotope-derived leaf internal CO2 (Ci ), particularly in wetter, recent years. Modeled estimates of seasonally integrated Anet and gs revealed a 43%-50% stimulation of Anet was responsible for increasing iWUE in both tree species throughout 79%-86% of the chronologies with reductions in gs attributable to the remaining 14%-21%, building upon a growing body of literature documenting stimulated Anet overwhelming reductions in gs as a primary mechanism of increasing iWUE of trees. Finally, our results underscore the importance of considering air pollution, which remains a major environmental issue in many areas of the world, alongside climate in the interpretation of leaf physiology derived from tree rings.


Assuntos
Poluição do Ar , Liriodendron , Quercus , Mudança Climática , Dióxido de Carbono/análise , Água , Folhas de Planta/química
3.
Glob Chang Biol ; 24(9): 3938-3953, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29781219

RESUMO

In the 45 years after legislation of the Clean Air Act, there has been tremendous progress in reducing acidic air pollutants in the eastern United States, yet limited evidence exists that cleaner air has improved forest health. Here, we investigate the influence of recent environmental changes on the growth and physiology of red spruce (Picea rubens Sarg.) trees, a key indicator species of forest health, spanning three locations along a 100 km transect in the Central Appalachian Mountains. We incorporated a multiproxy approach using 75-year tree ring chronologies of basal tree growth, carbon isotope discrimination (∆13 C, a proxy for leaf gas exchange), and δ15 N (a proxy for ecosystem N status) to examine tree and ecosystem level responses to environmental change. Results reveal the two most important factors driving increased tree growth since ca. 1989 are reductions in acidic sulfur pollution and increases in atmospheric CO2 , while reductions in pollutant emissions of NOx and warmer springs played smaller, but significant roles. Tree ring ∆13 C signatures increased significantly since 1989, concurrently with significant declines in tree ring δ15 N signatures. These isotope chronologies provide strong evidence that simultaneous changes in C and N cycling, including greater photosynthesis and stomatal conductance of trees and increases in ecosystem N retention, were related to recent increases in red spruce tree growth and are consequential to ecosystem recovery from acidic pollution. Intrinsic water use efficiency (iWUE) of the red spruce trees increased by ~51% across the 75-year chronology, and was driven by changes in atmospheric CO2 and acid pollution, but iWUE was not linked to recent increases in tree growth. This study documents the complex environmental interactions that have contributed to the recovery of red spruce forest ecosystems from pervasive acidic air pollution beginning in 1989, about 15 years after acidic pollutants started to decline in the United States.


Assuntos
Poluentes Atmosféricos/farmacologia , Poluição do Ar , Dióxido de Carbono/farmacologia , Mudança Climática , Picea/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Região dos Apalaches , Dióxido de Carbono/análise , Isótopos de Carbono/análise , Ecossistema , Fotossíntese , Picea/efeitos dos fármacos , Folhas de Planta/metabolismo , Árvores/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 110(38): 15319-24, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003125

RESUMO

Using dendroisotopic techniques, we show the recovery of Juniperus virginiana L. (eastern red cedar) trees in the Central Appalachian Mountains from decades of acidic pollution. Acid deposition over much of the 20th century reduced stomatal conductance of leaves, thereby increasing intrinsic water-use efficiency of the Juniperus trees. These data indicate that the stomata of Juniperus may be more sensitive to acid deposition than to increasing atmospheric CO2. A breakpoint in the 100-y δ(13)C tree ring chronology occurred around 1980, as the legacy of sulfur dioxide emissions declined following the enactment of the Clean Air Act in 1970, indicating a gradual increase in stomatal conductance (despite rising levels of atmospheric CO2) and a concurrent increase in photosynthesis related to decreasing acid deposition and increasing atmospheric CO2. Tree ring δ(34)S shows a synchronous change in the sources of sulfur used at the whole-tree level that indicates a reduced anthropogenic influence. The increase in growth and the δ(13)C and δ(34)S trends in the tree ring chronology of these Juniperus trees provide evidence for a distinct physiological response to changes in atmospheric SO2 emissions since ∼1980 and signify the positive impacts of landmark environmental legislation to facilitate recovery of forest ecosystems from acid deposition.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/legislação & jurisprudência , Juniperus/efeitos dos fármacos , Juniperus/crescimento & desenvolvimento , Enxofre/toxicidade , Poluição do Ar/história , Poluição do Ar/prevenção & controle , Ciclo do Carbono/fisiologia , Isótopos de Carbono/análise , Simulação por Computador , História do Século XX , História do Século XXI , Juniperus/metabolismo , Modelos Lineares , Espectrometria de Massas , Modelos Biológicos , Estômatos de Plantas/efeitos dos fármacos , Dinâmica Populacional , Isótopos de Enxofre/análise , Água/metabolismo , West Virginia
6.
J Integr Plant Biol ; 50(11): 1388-95, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19017126

RESUMO

During the last ice age, CO2 concentration ([CO2]) was 180-200 micromol/mol compared with the modern value of 380 micromol/mol, and global temperatures were approximately 8 degrees C cooler. Relatively little is known about the responses of C3 and C4 species to long-term exposure to glacial conditions. Here Abutilon theophrasti Medik. (C3) and Amaranthus retroflexus L. (C4) were grown at 200 micromol/mol CO2 with current (30/24 degrees C) and glacial (22/16 degrees C) temperatures for 22 d. Overall, the C4 species exhibited a large growth advantage over the C3 species at low [CO2]. However, this advantage was reduced at low temperature, where the C4 species produced 5 x the total mass of the C3 species versus 14 x at the high temperature. This difference was due to a reduction in C4 growth at low temperature, since the C3 species exhibited similar growth between temperatures. Physiological differences between temperatures were not detected for either species, although photorespiration/net photosynthesis was reduced in the C3 species grown at low temperature, suggesting evidence of improved carbon balance at this treatment. This system suggests that C4 species had a growth advantage over C3 species during low [CO2] of the last ice age, although concurrent reductions in temperatures may have reduced this advantage.


Assuntos
Amaranthus/efeitos dos fármacos , Amaranthus/metabolismo , Dióxido de Carbono/toxicidade , Temperatura Baixa , Magnoliopsida/efeitos dos fármacos , Magnoliopsida/metabolismo , Amaranthus/fisiologia , Respiração Celular/efeitos dos fármacos , Magnoliopsida/fisiologia , Fotossíntese/efeitos dos fármacos
7.
Tree Physiol ; 27(1): 25-32, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17169903

RESUMO

We examined the photosynthetic responses of four species of saplings growing in the understory of the Duke Forest FACE experiment during the seventh year of exposure to elevated CO2 concentration ([CO2]). Saplings of these same species were measured in the first year of the Duke Forest FACE experiment and at that time showed only seasonal fluctuations in acclimation of photosynthesis to elevated [CO2]. Based on observations from the Duke Forest FACE experiment, we hypothesized that after seven years of exposure to elevated [CO2] significant photosynthetic down-regulation would be observed in these tree species. To test our hypothesis, photosynthetic CO2-response and light-response curves, along with chlorophyll fluorescence, chlorophyll concentration and foliar N were measured twice during the summer of 2003. Exposure to elevated [CO2] continued to increase photosynthesis in all species measured after seven years of treatment with the greatest photosynthetic increase observed near saturating irradiances. In all species, elevated [CO2] increased electron transport efficiency but did not significantly alter carboxylation efficiency. Quantum yield estimated by light curves, chlorophyll concentration, and foliar nitrogen concentrations were unaffected by elevated [CO2]. Contrary to our hypothesis, there is little evidence of progressive N limitation of leaf-level processes in these understory tree species after seven years of exposure to elevated [CO2] in the Duke Forest FACE experiment.


Assuntos
Dióxido de Carbono/farmacologia , Fotossíntese/efeitos dos fármacos , Árvores/efeitos dos fármacos , Árvores/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Luz , North Carolina , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Especificidade da Espécie , Fatores de Tempo , Universidades
8.
Tree Physiol ; 25(4): 385-94, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15687087

RESUMO

We examined the effects of elevated carbon dioxide concentration ([CO2]) on the relationship between light-saturated net photosynthesis (A(sat)) and area-based foliar nitrogen (N) concentration (N(a)) in the canopy of the Duke Forest FACE experiment. Measurements of A(sat) and N(a) were made on two tree species growing in the forest overstory and four tree species growing in the forest understory, in ambient and elevated [CO2] FACE rings, during early and late summer of 1999, 2001 and 2002, corresponding to years three, five and six of CO2 treatment. When measured at the growth [CO2], net photosynthetic rates of each species examined in the forest overstory and understory were stimulated by elevated [CO2] at each measurement date. We found no effect of elevated [CO2] on N(a) in any of the species. The slope of the A(sat)-N relationship was 81% greater in elevated [CO2] than in ambient [CO2] when averaged across all sample dates, reflecting a differential CO2 effect on photosynthesis at the top and bottom of the canopy. We compared A(sat)-N relationships in trees grown in ambient and elevated [CO2] at two common CO2 concentrations, during late summer 2001 and both early and late 2002, to determine if the stimulatory effect of elevated [CO2] on photosynthesis diminishes over time. At all three sample times, neither the slopes nor the y-intercepts of the A(sat)-N relationships of trees grown in ambient or elevated [CO2] differed when measured at common CO2 concentrations, indicating that the responses of photosynthesis to long-term elevated [CO2] did not differ from the responses to a short-term increase in [CO2]. This finding, together with the observation that N(a) was unaffected by growth in elevated [CO2], indicates that these overstory and understory trees growing at the Duke Forest FACE experiment continue to show a strong stimulation of photosynthesis by elevated [CO2].


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Pinus taeda/metabolismo , Árvores/metabolismo , Atmosfera , Carya/metabolismo , Fabaceae/metabolismo , Liquidambar/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Luz Solar
9.
Oecologia ; 109(1): 28-33, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28307609

RESUMO

Seeds of Gliricidia sepium, a fast-growing woody legume native to seasonal tropical forests of Central America, were inoculated with N2-fixing Rhizobium bacteria and grown in environmentally controlled glasshouses for 67-71 days under ambient CO2 (35 Pa) and elevated CO2 (70 Pa) conditions. Seedlings were watered with an N-free, but otherwise complete, nutrient solution such that bacterial N2 fixation was the only source of N available to the plant. The primary objective of our study was to quantify the effect of CO2 enrichment on the kinetics of photosynthate transport to nodules and determine its subsequent effect on N2 fixation. Photosynthetic rates and carbon storage in leaves were higher in elevated CO2 plants indicating that more carbon was available for transport to nodules. A 14CO2 pulse-chase experiment demonstrated that photosynthetically fixed carbon was supplied by leaves to nodules at a faster rate when plants were grown in elevated CO2. Greater rates of carbon supply to nodules did not affect nodule mass per plant, but did increase specific nitrogenase activity (SNA) and total nitrogenase activity (TNA) resulting in greater N2 fixation. In fact, a 23% increase in the rate of carbon supplied to nodules coincided with a 23% increase in SNA for plants grown in elevated CO2, suggesting a direct correlation between carbon supply and nitrogenase activity. The improvement in plant N status produced much larger plants when grown in elevated CO2. These results suggest that Gliricidia, and possibly other N2-fixing trees, may show an early and positive growth response to elevated CO2, even in severely N-deficient soils, due to increased nitrogenase activity.

10.
Oecologia ; 95(4): 575-580, 1993 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28313299

RESUMO

Seedlings of loblolly pine (Pinus taeda L.) were grown under varying conditions of soil nitrogen and atmospheric carbon dioxide availability to investigate the interactive effects of these resources on the energetic requirements for leaf growth. Increasing the ambient CO2 partial pressure from 35 to 65 Pa increased seedling growth only when soil nitrogen was high. Biomass increased by 55% and photosynthesis increased by 13% after 100 days of CO2 enrichment. Leaves from seedlings grown in high soil nitrogen were 7.0% more expensive on a g glucose g-1 dry mass basis to produce than those grown in low nitrogen, while elevated CO2 decreased leaf cost by 3.5%. Nitrogen and CO2 availability had an interactive effect on leaf construction cost expressed on an area basis, reflecting source-sink interactions. When both resources were abundant, leaf construction cost on an area basis was relatively high (81.8±3.0 g glucose m-2) compared to leaves from high nitrogen, low CO2 seedlings (56.3±3.0 g glucose m-2) and low nitrogen, low CO2 seedlings (67.1±2.7 g glucose m-2). Leaf construction cost appears to respond to alterations in the utilization of photoassimilates mediated by resource availability.

11.
Tree Physiol ; 23(2): 109-18, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12533305

RESUMO

We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overall, we found that leaf-level net photosynthetic rates were enhanced by atmospheric CO2 enrichment throughout the season until early November; however, sun leaves showed a greater response to atmospheric CO2 enrichment than shade leaves. Elevated [CO2] did not affect leaf longevity, emergence date or abscission date of sun leaves or shade leaves. Leaf number and leaf area per shoot were unaffected by CO2 treatment. A simple shoot photosynthesis model indicated that elevated [CO2] stimulated photosynthesis by 60% in sun shoots, but by only 3% in shade shoots. Whole-shoot photosynthetic rate was more than 12 times greater in sun shoots than in shade shoots. In senescent leaves, elevated [CO2] did not affect residual leaf nitrogen, and nitrogen resorption was largely unaffected by atmospheric CO2 enrichment, except for a small decrease in shade leaves. Overall, elevated [CO2] had little effect on the number of leaves per shoot at any time during the season and, therefore, did not change seasonal carbon gain by extending or shortening the growing season. Stimulation of carbon gain by atmospheric CO2 enrichment in sweetgum trees growing in the Duke Forest FACE experiment was the result of a strong stimulation of photosynthesis throughout the growing season.


Assuntos
Liquidambar/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Árvores/fisiologia , Dióxido de Carbono/fisiologia , Clorofila/fisiologia , Estações do Ano , Luz Solar
12.
Am J Bot ; 94(5): 819-26, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-21636451

RESUMO

The response of understory species to elevated temperatures is not well understood but is important because these plants are highly sensitive to their growth conditions. Three-year-old plants of Panax quinquefolius, an understory herb endemic to the eastern deciduous forests of North America, were grown in a greenhouse at 25/20°C (day/night) or 30/25°C for one growing season and analyzed each month. Plants grown at high temperatures had an early onset of leaf senescence and therefore accumulated less carbon. From May to July, P. quinquefolius grown at high temperatures had decreased photosynthesis (52%), stomatal conductance (60%), and root and total biomass (33% and 28%, respectively) compared to plants grown at low temperatures. As P. quinquefolius prepared to overwinter, plants grown at high temperatures had less root biomass (53%) than plants in low temperatures. The amount of storage-root ginsenosides was unaffected by temperature, and differences in storage root size may explain why plants grown at high temperatures had greater concentrations of storage root ginsenosides (49%) than plants grown at low temperatures. Panax quinquefolius is clearly sensitive to a 5°C increase in temperature, and therefore other understory species may be negatively impacted by future increases in global temperature.

13.
Proc Natl Acad Sci U S A ; 103(24): 9086-9, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16754866

RESUMO

Contact with poison ivy (Toxicodendron radicans) is one of the most widely reported ailments at poison centers in the United States, and this plant has been introduced throughout the world, where it occurs with other allergenic members of the cashew family (Anacardiaceae). Approximately 80% of humans develop dermatitis upon exposure to the carbon-based active compound, urushiol. It is not known how poison ivy might respond to increasing concentrations of atmospheric carbon dioxide (CO(2)), but previous work done in controlled growth chambers shows that other vines exhibit large growth enhancement from elevated CO(2). Rising CO(2) is potentially responsible for the increased vine abundance that is inhibiting forest regeneration and increasing tree mortality around the world. In this 6-year study at the Duke University Free-Air CO(2) Enrichment experiment, we show that elevated atmospheric CO(2) in an intact forest ecosystem increases photosynthesis, water use efficiency, growth, and population biomass of poison ivy. The CO(2) growth stimulation exceeds that of most other woody species. Furthermore, high-CO(2) plants produce a more allergenic form of urushiol. Our results indicate that Toxicodendron taxa will become more abundant and more "toxic" in the future, potentially affecting global forest dynamics and human health.


Assuntos
Biomassa , Dióxido de Carbono/metabolismo , Dermatite por Toxicodendron , Toxicodendron/toxicidade , Catecóis/química , Catecóis/imunologia , Efeito Estufa , Humanos , Toxicodendron/química , Toxicodendron/crescimento & desenvolvimento , Árvores , Estados Unidos
14.
Tree Physiol ; 19(4_5): 235-242, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12651566

RESUMO

Sink strength in loblolly pine (Pinus taeda L.) was experimentally manipulated on two sun-exposed branches on each of two neighboring trees by excising the emerging terminal cohort (second flush of 1996) during a period of rapid needle expansion. In addition, export of photosynthate was restricted on one of these branches from each tree by removal of bark and phloem just below the second flush of 1995. Treatment-induced changes in needle biochemistry were measured in 3-month-old (first flush of 1996) and 1-year-old (final flush of 1995) needles collected 1, 5 and 8 days after treatment. In 3-month-old needles, sugar concentration increased by 24% one day after leader excision, and increased by 86% on Day 8 after leader excision and girdling. Starch concentration increased by 33% in 3-month-old needles on Day 1 after leader excision, and by 400% in 1-year-old needles on Day 8 after leader excision and girdling. Physiological changes in 3-month-old and 1-year-old needles were measured by open-flow gas exchange and chlorophyll fluorescence on Day 8 after leader excision and girdling. Light- and CO(2)-saturated net photosynthesis decreased following treatment in both 3-month-old and 1-year-old needles (23 and 17%, respectively). Maximum rate of carboxylation (V(cmax)) decreased by 25% in 3-month-old needles and by 31% in 1-year-old needles in response to leader excision and girdling. The combined treatment resulted in a 38% decrease in maximum rate of electron transport (J(max)) in 3-month-old needles and a 37% decrease in J(max) in 1-year-old needles. Before leader excision and girdling, 2% oxygen in air stimulated photosynthesis by 17 to 19%, but this stimulation was only 3 to 4% at 9 days after treatment. These physiological responses indicate that experimentally lowered sink strength resulted in rapid feedback inhibition of leaf-level photosynthetic capacity in loblolly pine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA