Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 486(7403): 405-9, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22722202

RESUMO

Breast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy. Recurrent somatic alterations in breast cancer have been described, including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration. Previous DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression. The MAGI3-AKT3 fusion leads to constitutive activation of AKT kinase, which is abolished by treatment with an ATP-competitive AKT small-molecule inhibitor.


Assuntos
Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Mutação/genética , Translocação Genética/genética , Algoritmos , Neoplasias da Mama/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/genética , Análise Mutacional de DNA , Exoma/genética , Feminino , Fusão Gênica/genética , Humanos , Proteínas de Membrana/genética , México , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vietnã
2.
Nucleic Acids Res ; 34(5): e36, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16517938

RESUMO

The specific down-regulation of gene expression in cells is a powerful method for elucidating a gene's function. A common method for suppressing gene expression is the elimination of mRNA by RNAi or antisense. Alternatively, oligonucleotide-derived aptamers have been used as protein-directed agents for the specific knock-down of both intracellular and extracellular protein activity. Protein-directed methods offer the advantage of more closely mimicking small molecule therapeutics' mechanism of activity. Furthermore, protein-directed methods may synergize with RNA-directed methods since the two methods attack gene expression at different levels. Here we have knocked down a well-characterized intracellular protein's activity, NFkappaB, by expressing either aptamers or small interfering RNAs (siRNAs). Both methods can diminish NFkappaB's activity to similar levels (from 29 to 64%). Interestingly, expression of both aptamers and siRNAs simultaneously, suppressed NFkappaB activity better than either method alone (up to 90%). These results demonstrate that the expression of intracellular aptamers is a viable alternative to siRNA knock-down. Furthermore, for the first time, we show that the use of aptamers and siRNA together can be the most effective way to achieve maximal knock-down of protein activity.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Subunidade p50 de NF-kappa B/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Aptâmeros de Nucleotídeos/química , Sequência de Bases , Linhagem Celular , Células HeLa , Humanos , Dados de Sequência Molecular , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo
3.
Oligonucleotides ; 16(4): 337-51, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17155909

RESUMO

Aptamers are short oligonucleotides that fold into well-defined three-dimensional architectures thereby enabling specific binding to molecular targets such as proteins. To be successful as a novel therapeutic modality, it is important for aptamers to not only bind their targets with high specificity and affinity, but also to exhibit favorable properties with respect to in vivo stability, cost-effective synthesis, and tolerability (i.e., safety). We describe methods for generating aptamers comprising 2 - deoxy purines and 2 -O-methyl pyrimidines (dRmY) that broadly satisfy many of these additional constraints. Conditions under which dRmY transcripts can be efficiently synthesized using mutant T7 RNA polymerases have been identified and used to generate large libraries from which dRmY aptamers to multiple target proteins, including interleukin (IL)-23 and thrombin, have been successfully discovered using the SELEX process. dRmY aptamers are shown to be highly nuclease-resistant, long-lived in vivo, efficiently synthesized, and capable of binding protein targets in a manner that inhibits their biologic activity with K(D) values in the low nM range. We believe that dRmY aptamers have considerable potential as a new class of therapeutic aptamers.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Animais , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Estabilidade de Medicamentos , Humanos , Camundongos , Estrutura Molecular , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnica de Seleção de Aptâmeros , Transcrição Gênica , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
BMC Biotechnol ; 2: 21, 2002 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-12466025

RESUMO

BACKGROUND: Allosteric ribozymes (aptazymes) that have extraordinary activation parameters have been generated in vitro by design and selection. For example, hammerhead and ligase ribozymes that are activated by small organic effectors and protein effectors have been selected from random sequence pools appended to extant ribozymes. Many ribozymes, especially self-splicing introns, are known control gene regulation or viral replication in vivo. We attempted to generate Group I self-splicing introns that were activated by a small organic effector, theophylline, and to show that such Group I aptazymes could mediate theophylline-dependent splicing in vivo. RESULTS: By appending aptamers to the Group I self-splicing intron, we have generated a Group I aptazyme whose in vivo splicing is controlled by exogenously added small molecules. Substantial differences in gene regulation could be observed with compounds that differed by as little as a single methyl group. The effector-specificity of the Group I aptazyme could be rationally engineered for new effector molecules. CONCLUSION: Group I aptazymes may find applications as genetic regulatory switches for generating conditional knockouts at the level of mRNA or for developing economically viable gene therapies.


Assuntos
Regulação Enzimológica da Expressão Gênica/genética , RNA Catalítico/genética , Regulação Alostérica/genética , Bacteriófago T4/enzimologia , Bacteriófago T4/genética , Sequência de Bases/genética , Ativação Enzimática/genética , Íntrons/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Splicing de RNA/genética , RNA Catalítico/química , Auto-Splicing de RNA Ribossômico/química , Auto-Splicing de RNA Ribossômico/genética , RNA Viral/genética , Especificidade por Substrato/genética , Timidilato Sintase/genética , Proteínas Virais/genética
5.
Pharm Res ; 21(12): 2234-46, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15648255

RESUMO

PURPOSE: Aptamers are highly selective nucleic acid-based drugs that are currently being developed for numerous therapeutic indications. Here, we determine plasma pharmacokinetics and tissue distribution in rat of several novel aptamer compositions, including fully 2'-O-methylated oligonucleotides and conjugates bearing high-molecular weight polyethylene glycol (PEG) polymers, cell-permeating peptides, and cholesterol. METHODS: Levels of aptamer conjugates in biological samples were quantified radiometrically and by a hybridization-based dual probe capture assay with enzyme-linked fluorescent readout. Intact aptamer in urine was detected by capillary gel electrophoresis and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF). RESULTS: Aptamer compositions examined exhibited a wide range of mean residence times in circulation (0.6-16 h) and significant variation in distribution levels among organs and tissues. Among the conjugates tested, in vivo properties of aptamers were altered most profoundly by conjugation with PEG groups. Complexation with a 20 kDa PEG polymer proved nearly as effective as a 40 kDa PEG polymer in preventing renal clearance of aptamers. Conjugation with 20 kDa PEG prolonged aptamer circulatory half-life, while reducing both the extent of aptamer distribution to the kidneys and the rate of urinary elimination. In contrast, the fully 2'-O-Me aptamer composition showed rapid clearance from circulation, and elimination with intact aptamer detectable in urine at 48 h post-administration. CONCLUSIONS: We find that conjugation and chemical composition can alter fundamental aspects of aptamer residence in circulation and distribution to tissues. Though the primary effect of PEGylation was on aptamer clearance, the prolonged systemic exposure afforded by presence of the 20 kDa moiety appeared to facilitate distribution of aptamer to tissues, particularly those of highly perfused organs.


Assuntos
Oligonucleotídeos/química , Oligonucleotídeos/farmacocinética , Animais , Disponibilidade Biológica , Química Farmacêutica , Relação Dose-Resposta a Droga , Masculino , Oligonucleotídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA