Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS Genet ; 18(11): e1010532, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441824

RESUMO

mRNA regulatory sequences control gene expression at multiple levels including translation initiation and mRNA decay. The 5' terminal sequences of mRNAs have unique regulatory potential because of their proximity to key post-transcriptional regulators. Here we have systematically probed the function of 5' terminal sequences in gene expression in human cells. Using a library of reporter mRNAs initiating with all possible 7-mer sequences at their 5' ends, we find an unexpected impact on transcription that underlies 200-fold differences in mRNA expression. Library sequences that promote high levels of transcription mirrored those found in native mRNAs and define two basic classes with similarities to classic Initiator (Inr) and TCT core promoter motifs. By comparing transcription, translation and decay rates, we identify sequences that are optimized for both efficient transcription and growth-regulated translation and stability, including variants of terminal oligopyrimidine (TOP) motifs. We further show that 5' sequences of endogenous mRNAs are enriched for multi-functional TCT/TOP hybrid sequences. Together, our results reveal how 5' sequences define two general classes of mRNAs with distinct growth-responsive profiles of expression across synthesis, translation and decay.


Assuntos
RNA Mensageiro , Humanos , RNA Mensageiro/genética
2.
Cell ; 137(5): 873-86, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19446321

RESUMO

The mTORC1 and mTORC2 pathways regulate cell growth, proliferation, and survival. We identify DEPTOR as an mTOR-interacting protein whose expression is negatively regulated by mTORC1 and mTORC2. Loss of DEPTOR activates S6K1, Akt, and SGK1, promotes cell growth and survival, and activates mTORC1 and mTORC2 kinase activities. DEPTOR overexpression suppresses S6K1 but, by relieving feedback inhibition from mTORC1 to PI3K signaling, activates Akt. Consistent with many human cancers having activated mTORC1 and mTORC2 pathways, DEPTOR expression is low in most cancers. Surprisingly, DEPTOR is highly overexpressed in a subset of multiple myelomas harboring cyclin D1/D3 or c-MAF/MAFB translocations. In these cells, high DEPTOR expression is necessary to maintain PI3K and Akt activation and a reduction in DEPTOR levels leads to apoptosis. Thus, we identify a novel mTOR-interacting protein whose deregulated overexpression in multiple myeloma cells represents a mechanism for activating PI3K/Akt signaling and promoting cell survival.


Assuntos
Sobrevivência Celular , Mieloma Múltiplo/metabolismo , Proteínas Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Ciclina D1/metabolismo , Ciclina D3 , Ciclinas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 117(10): 5319-5328, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094190

RESUMO

Terminal oligopyrimidine (TOP) motifs are sequences at the 5' ends of mRNAs that link their translation to the mTOR Complex 1 (mTORC1) nutrient-sensing signaling pathway. They are commonly regarded as discrete elements that reside on ∼100 mRNAs that mostly encode translation factors. However, the full spectrum of TOP sequences and their prevalence throughout the transcriptome remain unclear, primarily because of uncertainty over the mechanism that detects them. Here, we globally analyzed translation targets of La-related protein 1 (LARP1), an RNA-binding protein and mTORC1 effector that has been shown to repress TOP mRNA translation in a few specific cases. We establish that LARP1 is the primary translation regulator of mRNAs with classical TOP motifs genome-wide, and also that these motifs are extreme instances of a broader continuum of regulatory sequences. We identify the features of TOP sequences that determine their potency and quantify these as a metric that accurately predicts mTORC1/LARP1 regulation called a TOPscore. Analysis of TOPscores across the transcriptomes of 16 mammalian tissues defines a constitutive "core" set of TOP mRNAs, but also identifies tissue-specific TOP mRNAs produced via alternative transcription initiation sites. These results establish the central role of LARP1 in TOP mRNA regulation on a transcriptome scale and show how it connects mTORC1 to a tunable and dynamic program of gene expression that is tailored to specific biological contexts.


Assuntos
Autoantígenos/metabolismo , Motivos de Nucleotídeos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Biossíntese de Proteínas , Pirimidinas/química , RNA Mensageiro/química , Ribonucleoproteínas/metabolismo , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Mensageiro/genética , Transcriptoma , Antígeno SS-B
4.
Mol Biol Evol ; 37(1): 124-133, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501901

RESUMO

Eukaryotic cells are divided into the nucleus and the cytosol, and, to enter the nucleus, proteins typically possess short signal sequences, known as nuclear localization signals (NLSs). Although NLSs have long been considered as features unique to eukaryotic proteins, we show here that similar or identical protein segments are present in ribosomal proteins from the Archaea. Specifically, the ribosomal proteins uL3, uL15, uL18, and uS12 possess NLS-type motifs that are conserved across all major branches of the Archaea, including the most ancient groups Microarchaeota and Diapherotrites, pointing to the ancient origin of NLS-type motifs in the Archaea. Furthermore, by using fluorescence microscopy, we show that the archaeal NLS-type motifs can functionally substitute eukaryotic NLSs and direct the transport of ribosomal proteins into the nuclei of human cells. Collectively, these findings illustrate that the origin of NLSs preceded the origin of the cell nucleus, suggesting that the initial function of NLSs was not related to intracellular trafficking, but possibly was to improve recognition of nucleic acids by cellular proteins. Overall, our study reveals rare evolutionary intermediates among archaeal cells that can help elucidate the sequence of events that led to the origin of the eukaryotic cell.


Assuntos
Proteínas Arqueais/química , Evolução Biológica , Células Eucarióticas , Sinais de Localização Nuclear , Proteínas Ribossômicas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Humanos
5.
RNA Biol ; 18(2): 207-217, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32233986

RESUMO

The RNA-binding protein LARP1 has generated interest in recent years for its role in the mTOR signalling cascade and its regulation of terminal oligopyrimidine (TOP) mRNA translation. Paradoxically, some scientists have shown that LARP1 represses TOP translation while others that LARP1 activates it. Here, we present opinions from four leading scientists in the field to discuss these and other contradictory findings.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Autoantígenos/química , Autoantígenos/genética , Sítios de Ligação , Proteínas de Transporte , Regulação da Expressão Gênica , Humanos , Família Multigênica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA/química , RNA/metabolismo , Clivagem do RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Transdução de Sinais , Especificidade por Substrato , Antígeno SS-B
6.
Proc Natl Acad Sci U S A ; 115(49): E11505-E11512, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30455292

RESUMO

Intracellular organisms, such as obligate parasites and endosymbionts, typically possess small genomes due to continuous genome decay caused by an environment with alleviated natural selection. Previously, a few species with highly reduced genomes, including the intracellular pathogens Mycoplasma and Microsporidia, have been shown to carry degenerated editing domains in aminoacyl-tRNA synthetases. These defects in the protein synthesis machinery cause inaccurate translation of the genetic code, resulting in significant statistical errors in protein sequences that are thought to help parasites to escape immune response of a host. In this study we analyzed 10,423 complete bacterial genomes to assess conservation of the editing domains in tRNA synthetases, including LeuRS, IleRS, ValRS, ThrRS, AlaRS, and PheRS. We found that, while the editing domains remain intact in free-living species, they are degenerated in the overwhelming majority of host-restricted bacteria. Our work illustrates that massive genome erosion triggered by an intracellular lifestyle eradicates one of the most fundamental components of a living cell: the system responsible for proofreading of amino acid selection for protein synthesis. This finding suggests that inaccurate translation of the genetic code might be a general phenomenon among intercellular organisms with reduced genomes.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Sequência de Aminoácidos , Aminoácidos , Sequência Conservada , Regulação Bacteriana da Expressão Gênica/fisiologia , Biossíntese de Proteínas , Domínios Proteicos , Edição de RNA
7.
Nucleic Acids Res ; 46(3): 1457-1469, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29244122

RESUMO

Cell growth is a complex process shaped by extensive and coordinated changes in gene expression. Among these is the tightly regulated translation of a family of growth-related mRNAs defined by a 5' terminal oligopyrimidine (TOP) motif. TOP mRNA translation is partly controlled via the eukaryotic initiation factor 4F (eIF4F), a translation factor that recognizes the mRNA 5' cap structure. Recent studies have also implicated La-related protein 1 (LARP1), which competes with eIF4F for binding to mRNA 5' ends. However, it has remained controversial whether LARP1 represses TOP mRNA translation directly and, if so, what features define its mRNA targets. Here, we show that the C-terminal half of LARP1 is necessary and sufficient to control TOP mRNA translation in cells. This fragment contains the DM15 cap-binding domain as well as an adjacent regulatory region that we identified. We further demonstrate that purified LARP1 represses TOP mRNA translation in vitro through the combined recognition of both the TOP sequence and cap structure, and that its intrinsic repressive activity and affinity for these features are subject to regulation. These results support a model whereby the translation of TOP mRNAs is controlled by a growth-regulated competition between eIF4F and LARP1 for their 5' ends.


Assuntos
Autoantígenos/genética , Fator de Iniciação 4F em Eucariotos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Biossíntese de Proteínas , Pirimidinas/metabolismo , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Autoantígenos/metabolismo , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Biologia Computacional/métodos , Fator de Iniciação 4F em Eucariotos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Genéticos , Polirribossomos/genética , Polirribossomos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Pirimidinas/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Antígeno SS-B
8.
Nat Chem Biol ; 17(10): 1012-1013, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34168366
9.
Nature ; 485(7396): 109-13, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22552098

RESUMO

The mTOR complex 1 (mTORC1) kinase nucleates a pathway that promotes cell growth and proliferation and is the target of rapamycin, a drug with many clinical uses. mTORC1 regulates messenger RNA translation, but the overall translational program is poorly defined and no unifying model exists to explain how mTORC1 differentially controls the translation of specific mRNAs. Here we use high-resolution transcriptome-scale ribosome profiling to monitor translation in mouse cells acutely treated with the mTOR inhibitor Torin 1, which, unlike rapamycin, fully inhibits mTORC1 (ref. 2). Our data reveal a surprisingly simple model of the mRNA features and mechanisms that confer mTORC1-dependent translation control. The subset of mRNAs that are specifically regulated by mTORC1 consists almost entirely of transcripts with established 5' terminal oligopyrimidine (TOP) motifs, or, like Hsp90ab1 and Ybx1, with previously unrecognized TOP or related TOP-like motifs that we identified. We find no evidence to support proposals that mTORC1 preferentially regulates mRNAs with increased 5' untranslated region length or complexity. mTORC1 phosphorylates a myriad of translational regulators, but how it controls TOP mRNA translation is unknown. Remarkably, loss of just the 4E-BP family of translational repressors, arguably the best characterized mTORC1 substrates, is sufficient to render TOP and TOP-like mRNA translation resistant to Torin 1. The 4E-BPs inhibit translation initiation by interfering with the interaction between the cap-binding protein eIF4E and eIF4G1. Loss of this interaction diminishes the capacity of eIF4E to bind TOP and TOP-like mRNAs much more than other mRNAs, explaining why mTOR inhibition selectively suppresses their translation. Our results clarify the translational program controlled by mTORC1 and identify 4E-BPs and eIF4G1 as its master effectors.


Assuntos
Regulação da Expressão Gênica , Modelos Biológicos , Biossíntese de Proteínas , Proteínas/metabolismo , Regiões 5' não Traduzidas/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Naftiridinas/farmacologia , Motivos de Nucleotídeos , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Serina-Treonina Quinases TOR
10.
Biochem Soc Trans ; 45(1): 213-221, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28202675

RESUMO

The mammalian target of rapamycin (mTOR) signaling pathway is a master regulator of cell growth throughout eukaryotes. The pathway senses nutrient and other growth signals, and then orchestrates the complex systems of anabolic and catabolic metabolism that underpin the growth process. A central target of mTOR signaling is the translation machinery. mTOR uses a multitude of translation factors to drive the bulk production of protein that growth requires, but also to direct a post-transcriptional program of growth-specific gene expression. This review will discuss current understanding of how mTOR controls these mechanisms and their functions in growth control.


Assuntos
Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Modelos Genéticos , Fosforilação , RNA Mensageiro/metabolismo
13.
Genome Res ; 21(3): 433-46, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21239477

RESUMO

The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls cell growth in response to nutrient availability and growth factors. TORC1 signaling is hyperactive in cancer, and regulators of TORC1 signaling may represent therapeutic targets for human diseases. To identify novel regulators of TORC1 signaling, we performed a genome-scale RNA interference screen on microarrays of Drosophila melanogaster cells expressing human RPS6, a TORC1 effector whose phosphorylated form we detected by immunofluorescence. Our screen revealed that the TORC1-S6K-RPS6 signaling axis is regulated by many subcellular components, including the Class I vesicle coat (COPI), the spliceosome, the proteasome, the nuclear pore, and the translation initiation machinery. Using additional RNAi reagents, we confirmed 70 novel genes as significant on-target regulators of RPS6 phosphorylation, and we characterized them with extensive secondary assays probing various arms of the TORC1 pathways, identifying functional relationships among those genes. We conclude that cell-based microarrays are a useful platform for genome-scale and secondary screening in Drosophila, revealing regulators that may represent drug targets for cancers and other diseases of deregulated TORC1 signaling.


Assuntos
Proteínas Recombinantes/metabolismo , Proteína S6 Ribossômica/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Células Cultivadas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Imunofluorescência , Redes Reguladoras de Genes , Genoma , Genômica , Humanos , Análise em Microsséries , Terapia de Alvo Molecular , Fosforilação , Interferência de RNA , Proteínas Recombinantes/genética , Proteína S6 Ribossômica/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética
14.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38463950

RESUMO

mRNA therapeutics offer a potentially universal strategy for the efficient development and delivery of therapeutic proteins. Current mRNA vaccines include chemically modified nucleotides to reduce cellular immunogenicity. Here, we develop an efficient, high-throughput method to measure human translation initiation on therapeutically modified as well as endogenous RNAs. Using systems-level biochemistry, we quantify ribosome recruitment to tens of thousands of human 5' untranslated regions and identify sequences that mediate 250-fold effects. We observe widespread effects of coding sequences on translation initiation and identify small regulatory elements of 3-6 nucleotides that are sufficient to potently affect translational output. Incorporation of N1-methylpseudouridine (m1Ψ) selectively enhances translation by specific 5' UTRs that we demonstrate surpass those of current mRNA vaccines. Our approach is broadly applicable to dissect mechanisms of human translation initiation and engineer more potent therapeutic mRNAs. Highlights: Measurement of >30,000 human 5' UTRs reveals a 250-fold range of translation outputSystematic mutagenesis demonstrates the causality of short (3-6nt) regulatory elementsN1-methylpseudouridine alters translation initiation in a sequence-specific mannerOptimal modified 5' UTRs outperform those in the current class of mRNA vaccines.

15.
J Biol Chem ; 287(13): 9742-9752, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22223645

RESUMO

An intensive recent effort to develop ATP-competitive mTOR inhibitors has resulted in several potent and selective molecules such as Torin1, PP242, KU63794, and WYE354. These inhibitors are being widely used as pharmacological probes of mTOR-dependent biology. To determine the potency and specificity of these agents, we have undertaken a systematic kinome-wide effort to profile their selectivity and potency using chemical proteomics and assays for enzymatic activity, protein binding, and disruption of cellular signaling. Enzymatic and cellular assays revealed that all four compounds are potent inhibitors of mTORC1 and mTORC2, with Torin1 exhibiting ∼20-fold greater potency for inhibition of Thr-389 phosphorylation on S6 kinases (EC(50) = 2 nM) relative to other inhibitors. In vitro biochemical profiling at 10 µM revealed binding of PP242 to numerous kinases, although WYE354 and KU63794 bound only to p38 kinases and PI3K isoforms and Torin1 to ataxia telangiectasia mutated, ATM and Rad3-related protein, and DNA-PK. Analysis of these protein targets in cellular assays did not reveal any off-target activities for Torin1, WYE354, and KU63794 at concentrations below 1 µM but did show that PP242 efficiently inhibited the RET receptor (EC(50), 42 nM) and JAK1/2/3 kinases (EC(50), 780 nM). In addition, Torin1 displayed unusually slow kinetics for inhibition of the mTORC1/2 complex, a property likely to contribute to the pharmacology of this inhibitor. Our results demonstrated that, with the exception of PP242, available ATP-competitive compounds are highly selective mTOR inhibitors when applied to cells at concentrations below 1 µM and that the compounds may represent a starting point for medicinal chemistry efforts aimed at developing inhibitors of other PI3K kinase-related kinases.


Assuntos
Inibidores Enzimáticos/farmacocinética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Trifosfato de Adenosina , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Proteômica/métodos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Biochem Soc Trans ; 41(4): 913-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863155

RESUMO

The process of cell growth depends on a complex co-ordinated programme of macromolecular synthesis that can be tuned to environmental constraints. In eukaryotes, the mTOR [mammalian (or mechanistic) target of rapamycin] signalling pathway is a master regulator of this process, in part by regulating mRNA translation through control of the eIF4F (eukaryotic initiation factor 4F) initiation complex. The present review discusses the role of this relationship in mTOR-regulated gene expression, and its contribution to phenotypes associated with deregulated mTOR signalling, such as cancer.


Assuntos
Fator de Iniciação 4F em Eucariotos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Fator de Iniciação 4F em Eucariotos/metabolismo , Humanos , Neoplasias/metabolismo , Ligação Proteica , Serina-Treonina Quinases TOR/metabolismo
17.
Curr Protoc ; 2(1): e344, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35041257

RESUMO

The control of mRNA stability is fundamental to gene regulation, and a deeper understanding of this post-transcriptional regulatory step can provide key insights into gene function. Measuring mRNA half-lives directly, however, is challenging. The most common strategies for evaluating mRNA stability and decay involve blocking general transcription and then measuring the decline in mRNA levels over time. The downside of these approaches, however, is that they severely impact cell function and viability, indirectly perturbing gene expression. Here, we describe Roadblock-qPCR, a simple method for measuring mRNA decay kinetics in living cells that is both economical and quick. Cells are first incubated with the nucleoside analog 4-thiouridine (4sU), which is readily incorporated into nascent mRNAs during transcription. RNA is then extracted and treated with N-ethylmaleimide (NEM), a sulfhydryl alkylating agent that selectively modifies 4sU, before proceeding to cDNA synthesis. Because the NEM-modified 4sU creates a chemical "roadblock" that interferes with reverse transcription, this treatment ultimately results in the depletion of the nascent 4sU-containing transcripts from the cDNA pool. As such, the decay rate of the non-4sU-labeled pre-existing mRNAs can be monitored by quantitative PCR (qPCR). In combination with spike-in standards, this approach can be used to efficiently and accurately measure the half-lives of endogenous mRNAs with a wide range of stabilities, while avoiding the artifacts of transcription shutoff strategies. © 2022 Wiley Periodicals LLC. Basic Protocol: Roadblock-qPCR Support Protocol: Synthesis of spike-in mRNA.


Assuntos
Estabilidade de RNA , Tiouridina , RNA , RNA Mensageiro/genética , Coloração e Rotulagem
18.
Dev Cell ; 11(6): 859-71, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17141160

RESUMO

The mTOR kinase controls cell growth, proliferation, and survival through two distinct multiprotein complexes, mTORC1 and mTORC2. mTOR and mLST8 are in both complexes, while raptor and rictor are part of only mTORC1 and mTORC2, respectively. To investigate mTORC1 and mTORC2 function in vivo, we generated mice deficient for raptor, rictor, or mLST8. Like mice null for mTOR, those lacking raptor die early in development. However, mLST8 null embryos survive until e10.5 and resemble embryos missing rictor. mLST8 is necessary to maintain the rictor-mTOR, but not the raptor-mTOR, interaction, and both mLST8 and rictor are required for the hydrophobic motif phosphorylation of Akt/PKB and PKCalpha, but not S6K1. Furthermore, insulin signaling to FOXO3, but not to TSC2 or GSK3beta, requires mLST8 and rictor. Thus, mTORC1 function is essential in early development, mLST8 is required only for mTORC2 signaling, and mTORC2 is a necessary component of the Akt-FOXO and PKCalpha pathways.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Transativadores/fisiologia , Animais , Citoesqueleto/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Fetal/genética , Viabilidade Fetal/genética , Proteína Forkhead Box O3 , Marcação de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos/embriologia , Camundongos Knockout , Complexos Multiproteicos , Fosforilação , Ligação Proteica , Proteínas , Serina-Treonina Quinases TOR , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
20.
Cell Metab ; 1(5): 287-8, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16054073

RESUMO

Cells that encounter low nutrient conditions often respond by arresting cell division or becoming apoptotic. Recent work by Jones and colleagues (Jones et al.,2005) reveals how the AMP-activated kinase mediates this process by phosphorylating and activating the tumor suppressor p53.


Assuntos
Células/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Proliferação de Células , Sobrevivência Celular/fisiologia , Glucose/metabolismo , Humanos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA