Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 511(7509): 344-7, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24896178

RESUMO

Severe intellectual disability (ID) occurs in 0.5% of newborns and is thought to be largely genetic in origin. The extensive genetic heterogeneity of this disorder requires a genome-wide detection of all types of genetic variation. Microarray studies and, more recently, exome sequencing have demonstrated the importance of de novo copy number variations (CNVs) and single-nucleotide variations (SNVs) in ID, but the majority of cases remain undiagnosed. Here we applied whole-genome sequencing to 50 patients with severe ID and their unaffected parents. All patients included had not received a molecular diagnosis after extensive genetic prescreening, including microarray-based CNV studies and exome sequencing. Notwithstanding this prescreening, 84 de novo SNVs affecting the coding region were identified, which showed a statistically significant enrichment of loss-of-function mutations as well as an enrichment for genes previously implicated in ID-related disorders. In addition, we identified eight de novo CNVs, including single-exon and intra-exonic deletions, as well as interchromosomal duplications. These CNVs affected known ID genes more frequently than expected. On the basis of diagnostic interpretation of all de novo variants, a conclusive genetic diagnosis was reached in 20 patients. Together with one compound heterozygous CNV causing disease in a recessive mode, this results in a diagnostic yield of 42% in this extensively studied cohort, and 62% as a cumulative estimate in an unselected cohort. These results suggest that de novo SNVs and CNVs affecting the coding region are a major cause of severe ID. Genome sequencing can be applied as a single genetic test to reliably identify and characterize the comprehensive spectrum of genetic variation, providing a genetic diagnosis in the majority of patients with severe ID.


Assuntos
Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Deficiência Intelectual/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Cromossomos Humanos Par 4/genética , Cromossomos Humanos X/genética , Estudos de Coortes , Duplicação Gênica/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Masculino
2.
Genome Res ; 25(6): 792-801, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25883321

RESUMO

Small insertions and deletions (indels) and large structural variations (SVs) are major contributors to human genetic diversity and disease. However, mutation rates and characteristics of de novo indels and SVs in the general population have remained largely unexplored. We report 332 validated de novo structural changes identified in whole genomes of 250 families, including complex indels, retrotransposon insertions, and interchromosomal events. These data indicate a mutation rate of 2.94 indels (1-20 bp) and 0.16 SVs (>20 bp) per generation. De novo structural changes affect on average 4.1 kbp of genomic sequence and 29 coding bases per generation, which is 91 and 52 times more nucleotides than de novo substitutions, respectively. This contrasts with the equal genomic footprint of inherited SVs and substitutions. An excess of structural changes originated on paternal haplotypes. Additionally, we observed a nonuniform distribution of de novo SVs across offspring. These results reveal the importance of different mutational mechanisms to changes in human genome structure across generations.


Assuntos
Variação Genética , Genoma Humano , Alelos , Sequência de Aminoácidos , Feminino , Genômica , Haplótipos , Humanos , Mutação INDEL , Masculino , Dados de Sequência Molecular , Taxa de Mutação , Polimorfismo de Nucleotídeo Único , Retroelementos/genética , Alinhamento de Sequência , Análise de Sequência de DNA
3.
Nat Commun ; 7: 12989, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708267

RESUMO

Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.9 million genome variants across 9 different variant classes, including novel forms of complex indels, and retrotransposition-mediated insertions of mobile elements and processed RNAs. A large proportion are previously under reported variants sized between 21 and 100 bp. We detect 4 megabases of novel sequence, encoding 11 new transcripts. Finally, we show 191 known, trait-associated SNPs to be in strong linkage disequilibrium with SVs and demonstrate that our panel facilitates accurate imputation of SVs in unrelated individuals.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Genômica , Algoritmos , Cromossomos/ultraestrutura , Biologia Computacional , Deleção de Genes , Genótipo , Haplótipos , Humanos , Mutação INDEL , Desequilíbrio de Ligação , Países Baixos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , RNA/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNA , Software
4.
Expert Rev Mol Diagn ; 15(1): 111-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25347354

RESUMO

Noninvasive prenatal testing (NIPT) for fetal aneuploidies using cell-free fetal DNA in maternal plasma has revolutionized the field of prenatal care and methods using massively parallel sequencing are now being implemented almost worldwide. Substantial progress has been made from initially testing for (an)euploidies of chromosomes 13, 18 and 21, to testing for sex chromosome (an)euploidies, additional autosomal aneuploidies as well as partial deletions and duplications genome-wide. Although NIPT is associated with significantly reduced risks for the fetus in comparison to existing invasive prenatal diagnostic methods, it presents several implementation challenges. Here, we review key issues potentially influencing NIPT and illustrate them using both data from literature and in-house data.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/normas , Diagnóstico Pré-Natal/normas , Aberrações Cromossômicas , Mapeamento Cromossômico , Análise Mutacional de DNA , Feminino , Testes Genéticos , Humanos , Técnicas de Diagnóstico Molecular , Polimorfismo de Nucleotídeo Único , Gravidez , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Genome Biol ; 15(10): 488, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25348035

RESUMO

Mobile elements are major drivers in changing genomic architecture and can cause disease. The detection of mobile elements is hindered due to the low mappability of their highly repetitive sequences. We have developed an algorithm, called Mobster, to detect non-reference mobile element insertions in next generation sequencing data from both whole genome and whole exome studies. Mobster uses discordant read pairs and clipped reads in combination with consensus sequences of known active mobile elements. Mobster has a low false discovery rateand high recall rate for both L1 and Alu elements. Mobster is available at http://sourceforge.net/projects/mobster.


Assuntos
Algoritmos , Elementos de DNA Transponíveis , Análise de Sequência de DNA/métodos , Benchmarking , Genoma Humano , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA