Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 203: 107155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527697

RESUMO

Non-alcoholic fatty liver disease (NAFLD) encompasses hepatic steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. It is the primary cause of chronic liver disorders, with a high prevalence but no approved treatment. Therefore, it is indispensable to find a trustworthy therapy for NAFLD. Recently, mounting evidence illustrates that Sirtuin 1 (SIRT1) is strongly associated with NAFLD. SIRT1 activation or overexpression attenuate NAFLD, while SIRT1 deficiency aggravates NAFLD. Besides, an array of therapeutic agents, including natural compounds, synthetic compounds, traditional Chinese medicine formula, and stem cell transplantation, alleviates NALFD via SIRT1 activation or upregulation. Mechanically, SIRT1 alleviates NAFLD by reestablishing autophagy, enhancing mitochondrial function, suppressing oxidative stress, and coordinating lipid metabolism, as well as reducing hepatocyte apoptosis and inflammation. In this review, we introduced the structure and function of SIRT1 briefly, and summarized the effect of SIRT1 on NAFLD and its mechanism, along with the application of SIRT1 agonists in treating NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Sirtuína 1 , Sirtuína 1/metabolismo , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos
2.
Hepatol Res ; 54(1): 4-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37906585

RESUMO

In 2018, there was a hepatitis A outbreak in Japan, and hepatitis A virus (HAV) infection is considered a sexually transmitted disease. In general, patients with hepatitis A should be given attention, and this disease should be prevented more than ever. The Japan Agency for Medical Research and Development (AMED) Hepatitis A and E viruses (HAV and HEV) Study Group has worked on the project to create "Recent Advances in Hepatitis A Virus (HAV) Research and Clinical Practice Guidelines for HAV Infection in Japan". The group consists of expert hepatologists and virologists who gathered at virtual meeting on August 5, 2023. Data about the pathogenesis, infection routes, diagnosis, complications, several factors for the severities, vaccination, and current and future treatments for hepatitis A were discussed and debated for a draft version. The participants assessed the quality of cited studies. The finalized recommendations are presented in this review. The recent advances in HAV research and clinical practice for HAV infection in Japan, have been reviewed by the AMED HAV and HEV Study Group.

3.
Hepatol Res ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874115

RESUMO

Acute hepatitis E was considered rare until reports emerged affirming the existence of hepatitis E virus (HEV) genotypes 3 and 4 infections in Japan in the early 2000s. Extensive studies by Japanese researchers have highlighted the pivotal role of pigs and wild animals, such as wild boars and deer, as reservoirs for HEV, linking them to zoonotic infections in Japan. Currently, when hepatitis occurs subsequent to the consumption of undercooked or grilled pork, wild boar meat, or offal (including pig liver and intestines), HEV infection should be considered. Following the approval of anti-HEV immunoglobulin A antibody as a diagnostic tool for hepatitis E by Japan's Health Insurance System in 2011, the annual number of diagnosed cases of HEV infection has surged. Notably, the occurrence of post-transfusion hepatitis E promoted nationwide screening of blood products for HEV using nucleic acid amplification tests since 2020. Furthermore, chronic hepatitis E has been observed in immunosuppressed individuals. Considering the significance of hepatitis E, heightened preventive measures are essential. The Japan Agency for Medical Research and Development Hepatitis A and E viruses (HAV and HEV) Study Group, which includes special virologists and hepatologists, held a virtual meeting on February 17, 2024. Discussions encompassed pathogenesis, transmission routes, diagnosis, complications, severity factors, and ongoing and prospective vaccination or treatments for hepatitis E. Rigorous assessment of referenced studies culminated in the formulation of recommendations, which are detailed within this review. This comprehensive review presents recent advancements in HEV research and Japanese clinical practice guidelines for HEV infection.

4.
Bioorg Chem ; 148: 107463, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776649

RESUMO

Thrombosis leads to elevated mortality rates and substantial medical expenses worldwide. Human factor IXa (HFIXa) protease is pivotal in tissue factor (TF)-mediated thrombin generation, and represents a promising target for anticoagulant therapy. We herein isolated novel DNA aptamers that specifically bind to HFIXa through systematic evolution of ligands by exponential enrichment (SELEX) method. We identified two distinct aptamers, seq 5 and seq 11, which demonstrated high binding affinity to HFIXa (Kd = 74.07 ± 2.53 nM, and 4.93 ± 0.15 nM, respectively). Computer software was used for conformational simulation and kinetic analysis of DNA aptamers and HFIXa binding. These aptamers dose-dependently prolonged activated partial thromboplastin time (aPTT) in plasma. We further rationally optimized the aptamers by truncation and site-directed mutation, and generated the truncated forms (Seq 5-1t, Seq 11-1t) and truncated-mutated forms (Seq 5-2tm, Seq 11-2tm). They also showed good anticoagulant effects. The rationally and structurally designed antidotes (seq 5-2b and seq 11-2b) were competitively bound to the DNA aptamers and effectively reversed the anticoagulant effect. This strategy provides DNA aptamer drug-antidote pair with effective anticoagulation and rapid reversal, developing advanced therapies by safe, regulatable aptamer drug-antidote pair.


Assuntos
Antídotos , Aptâmeros de Nucleotídeos , Fator IXa , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Humanos , Fator IXa/antagonistas & inibidores , Fator IXa/metabolismo , Antídotos/farmacologia , Antídotos/química , Antídotos/síntese química , Relação Dose-Resposta a Droga , Anticoagulantes/farmacologia , Anticoagulantes/química , Relação Estrutura-Atividade , Estrutura Molecular , Técnica de Seleção de Aptâmeros
5.
Acta Pharmacol Sin ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632318

RESUMO

Frizzled receptors (FZDs) are key contributors intrinsic to the Wnt signaling pathway, activation of FZDs triggering the Wnt signaling cascade is frequently observed in human tumors and intimately associated with an aggressive carcinoma phenotype. It has been shown that the abnormal expression of FZD receptors contributes to the manifestation of malignant characteristics in human tumors such as enhanced cell proliferation, metastasis, chemotherapy resistance as well as the acquisition of cancer stemness. Given the essential roles of FZD receptors in the Wnt signaling in human tumors, this review aims to consolidate the prevailing knowledge on the specific status of FZD receptors (FZD1-10) and elucidate their respective functions in tumor progression. Furthermore, we delineate the structural basis for binding of FZD and its co-receptors to Wnt, and provide a better theoretical foundation for subsequent studies on related mechanisms. Finally, we describe the existing biological classes of small molecule-based FZD inhibitors in detail in the hope that they can provide useful assistance for design and development of novel drug candidates targeted FZDs.

6.
Appl Opt ; 63(12): 3334-3342, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856485

RESUMO

A channelized multi-frequency measurement system based on asymmetric double sideband detection is proposed. In this scheme, the sub-modulators of the dual-parallel Mach-Zehnder modulator are utilized for optical frequency comb (OFC) generation and under-test signal modulation. Subsequently, a sawtooth wave voltage is applied to the main modulator to introduce frequency shift to the modulated signals, breaking the symmetry between the RF signals and the OFC. The coupled signal is then divided into upper and lower sidebands for frequency down-conversion. By calibrating the measurement results of the two sidebands with each other, the frequency of the signal can be accurately measured. Simulation is preformed to realize multi-frequency measurement of microwave signals with measurement error less than 2 MHz in the range of 2.2-20 GHz. It is also found that the proposal can solve the problem of frequency ambiguity.

7.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612477

RESUMO

Cell division cycle 23 (CDC23) is a component of the tetratricopeptide repeat (TPR) subunit in the anaphase-promoting complex or cyclosome (APC/C) complex, which participates in the regulation of mitosis in eukaryotes. However, the regulatory model and mechanism by which the CDC23 gene regulates muscle production in pigs are largely unknown. In this study, we investigated the expression of CDC23 in pigs, and the results indicated that CDC23 is widely expressed in various tissues and organs. In vitro cell experiments have demonstrated that CDC23 promotes the proliferation of myoblasts, as well as significantly positively regulating the differentiation of skeletal muscle satellite cells. In addition, Gene Set Enrichment Analysis (GSEA) revealed a significant downregulation of the cell cycle pathway during the differentiation process of skeletal muscle satellite cells. The protein-protein interaction (PPI) network showed a high degree of interaction between genes related to the cell cycle pathway and CDC23. Subsequently, in differentiated myocytes induced after overexpression of CDC23, the level of CDC23 exhibited a significant negative correlation with the expression of key factors in the cell cycle pathway, suggesting that CDC23 may be involved in the inhibition of the cell cycle signaling pathway in order to promote the differentiation process. In summary, we preliminarily determined the function of CDC23 with the aim of providing new insights into molecular regulation during porcine skeletal muscle development.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Animais , Ciclossomo-Complexo Promotor de Anáfase , Células Musculares , Suínos
8.
Fa Yi Xue Za Zhi ; 40(1): 37-42, 2024 Feb 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38500459

RESUMO

OBJECTIVES: To investigate the toxicokinetic differences of 3,4-methylenedioxy-N-methylamphetamine (MDMA) and its metabolite 4,5-methylene dioxy amphetamine (MDA) in rats after single and continuous administration of MDMA, providing reference data for the forensic identification of MDMA. METHODS: A total of 24 rats in the single administration group were randomly divided into 5, 10 and 20 mg/kg experimental groups and the control group, with 6 rats in each group. The experimental group was given intraperitoneal injection of MDMA, and the control group was given intraperitoneal injection of the same volume of normal saline as the experimental group. The amount of 0.5 mL blood was collected from the medial canthus 5 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h after administration. In the continuous administration group, 24 rats were randomly divided into the experimental group (18 rats) and the control group (6 rats). The experimental group was given MDMA 7 d by continuous intraperitoneal injection in increments of 5, 7, 9, 11, 13, 15, 17 mg/kg per day, respectively, while the control group was given the same volume of normal saline as the experimental group by intraperitoneal injection. On the eighth day, the experimental rats were randomly divided into 5, 10 and 20 mg/kg dose groups, with 6 rats in each group. MDMA was injected intraperitoneally, and the control group was injected intraperitoneally with the same volume of normal saline as the experimental group. On the eighth day, 0.5 mL of blood was taken from the medial canthus 5 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h after administration. Liquid chromatography-triple quadrupole tandem mass spectrometry was used to detect MDMA and MDA levels, and statistical software was employed for data analysis. RESULTS: In the single-administration group, peak concentrations of MDMA and MDA were reached at 5 min and 1 h after administration, respectively, with the largest detection time limit of 12 h. In the continuous administration group, peak concentrations were reached at 30 min and 1.5 h after administration, respectively, with the largest detection time limit of 10 h. Nonlinear fitting equations for the concentration ratio of MDMA and MDA in plasma and administration time in the single-administration group and continuous administration group were as follows: T=10.362C-1.183, R2=0.974 6; T=7.397 3C-0.694, R2=0.961 5 (T: injection time; C: concentration ratio of MDMA to MDA in plasma). CONCLUSIONS: The toxicokinetic data of MDMA and its metabolite MDA in rats, obtained through single and continuous administration, including peak concentration, peak time, detection time limit, and the relationship between concentration ratio and administration time, provide a theoretical and data foundation for relevant forensic identification.


Assuntos
3,4-Metilenodioxianfetamina , Anfetaminas , N-Metil-3,4-Metilenodioxianfetamina , Ratos , Animais , Anfetamina , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , 3,4-Metilenodioxianfetamina/análise , Toxicocinética , Solução Salina
9.
Angew Chem Int Ed Engl ; 63(18): e202402018, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38390636

RESUMO

Developing ruthenium-based heterogeneous catalysts with an efficient and stable interface is essential for enhanced acidic oxygen evolution reaction (OER). Herein, we report a defect-rich ultrathin boron nitride nanosheet support with relatively independent electron donor and acceptor sites, which serves as an electron reservoir and receiving station for RuO2, realizing the rapid supply and reception of electrons. Through precisely controlling the reaction interface, a low OER overpotential of only 180 mV (at 10 mA cm-2) and long-term operational stability (350 h) are achieved, suggesting potential practical applications. In situ characterization and theoretical calculations have validated the existence of a localized electronic recycling between RuO2 and ultrathin BN nanosheets (BNNS). The electron-rich Ru sites accelerate the adsorption of water molecules and the dissociation of intermediates, while the interconnection between the O-terminal and B-terminal edge establishes electronic back-donation, effectively suppressing the over-oxidation of lattice oxygen. This study provides a new perspective for constructing a stable and highly active catalytic interface.

10.
Clin Immunol ; 248: 109217, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36581220

RESUMO

Cold tumor immune microenvironment (TIME) of pancreatic cancer (PC) with minimal dendritic cell (DC) and T cell infiltration can result in insufficient immunotherapy and chemotherapy. While gemcitabine (GEM) is a first-line chemotherapeutic drug for PC, its efficacy is reduced by immunosuppression and drug resistance. Ginsenoside Rh2 (Rh2) is known to have anti-cancer and immunomodulatory properties. Combining GEM with Rh2 may thus overcome immunosuppression and induce lasting anti-tumor immunity in PC. Here, we showed that after GEM-Rh2 therapy, there was significantly greater tumor infiltration by DCs. Caspase recruitment domain-containing protein 9 (CARD9), a central adaptor protein, was strongly up-regulated DCs with GEM-Rh2 therapy and promoted anti-tumor immune responses by DCs. CARD9 was found to be a critical target for Rh2 to enhance DC function. However, GEM-Rh2 treatment did not achieve the substantial anti-PC efficacy in CARD9-/- mice as in WT mice. The adoptive transfer of WT DCs to DC-depleted PC mice treated with GEM-Rh2 elicited strong anti-tumor immune responses, although CARD9-/- DCs were less effective than WT DCs. Our results showed that GEM-Rh2 may reverse cold TIME by enhancing tumor immunogenicity and decreasing the levels of immunosuppressive factors, reactivating DCs via the CARD9-BCL10-MALT1/ NF-κB pathway. Our findings suggest a potentially feasible and safe treatment strategy for PC, with a unique mechanism of action. Thus, Rh2 activation of DCs may remodel the cold TIME and optimize GEM chemotherapy for future therapeutic use.


Assuntos
NF-kappa B , Neoplasias Pancreáticas , Animais , Camundongos , NF-kappa B/metabolismo , Gencitabina , Imunidade , Células Dendríticas , Linhagem Celular Tumoral , Microambiente Tumoral , Proteína 10 de Linfoma CCL de Células B , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Neoplasias Pancreáticas
11.
Hepatology ; 76(5): 1275-1290, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35179799

RESUMO

BACKGROUND AND AIMS: Hepatoblastoma (HB) is the most common pediatric liver cancer. Its predominant occurrence in very young children led us to investigate whether the neonatal liver provides a protumorigenic niche to HB development. APPROACH AND RESULTS: HB development was compared between orthotopic transplantation models established in postnatal day 5 (P5) and 60 (P60) mice (P5Tx and P60Tx models). Single-cell RNA-sequencing (sc-RNAseq) was performed using tumor and liver tissues from both models and the top candidate cell types and genes identified are investigated for their roles in HB cell growth, migration, and survival. CONCLUSIONS: We found that various HB cell lines including HepG2 cells were consistently and considerably more tumorigenic and metastatic in the P5Tx model than in the P60Tx models. Sc-RNAseq of the P5Tx and P60Tx HepG2 models revealed that the P5Tx tumor was more hypoxic and had a larger number of activated hepatic stellate cells (aHSCs) in the tumor-surrounding liver that express significantly higher levels of Cxcl1 than those from the P60Tx model. We found these differences were developmentally present in normal P5 and P60 liver. We showed that the Cxcl1/Cxcr2 axis mediated HB cell migration and was critical to HB cell survival under hypoxia. Treating HepG2 P60Tx model with recombinant CXCL1 protein induced intrahepatic and pulmonary metastasis and CXCR2 knockout (KO) in HepG2 cells abolished their metastatic potential in the P5Tx model. Lastly, we showed that in tumors from patients with metastatic HB, there was a similar larger population of aHSCs in the tumor-surrounding liver than in localized tumors, and tumor hypoxia was uniquely associated with prognosis of patients with HB among pediatric cancers. We demonstrated that the neonatal liver provides a prometastatic niche to HB development through the Cxcl1/Cxcr2 axis.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Camundongos , Animais , Hepatoblastoma/metabolismo , Quimiocina CXCL1/metabolismo , Receptores de Interleucina-8B/genética , Neoplasias Hepáticas/patologia , RNA
12.
J Med Virol ; 95(6): e28886, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37350032

RESUMO

Hepatitis E virus (HEV) is an emerging causative agent of acute hepatitis. To clarify the epidemiology of HEV and characterize the genetic diversity of the virus in Japan, nationwide enhanced surveillance and molecular characterization studies of HEV in Japan were undertaken from 2014 to 2021. In total, 2770 hepatitis E cases were reported, of which 88% were domestic cases, while only 4.1% represented cases following infection abroad. In addition, 57% of domestic infections occurred in males aged in their 40s-70s. For domestic cases, infection via pork meat consumption continued to be the most reported route. Analysis of the 324 sequences detected between 2016 and 2021 showed that the majority of domestic HEV strains belong to Genotype 3a (G3a) and G3b. In contrast, six of eight cases of G1 HEV reflected infection abroad. Our results suggest that HEV is circulating widely in Japan, with genotypes G3a and G3b being most prevalent. Continued surveillance is necessary to monitor future trends and changes in the epidemiology of HEV in Japan.


Assuntos
Vírus da Hepatite E , Hepatite E , Masculino , Humanos , Hepatite E/epidemiologia , Japão/epidemiologia , Filogenia , Vírus da Hepatite E/genética , Genótipo , RNA Viral/genética
13.
J Org Chem ; 88(17): 12311-12318, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37585499

RESUMO

Dithiocarbamates synthesis is extremely important in plenty of biomedical and agrochemical applications, especially fungicide development, but remains a great challenge. In this work, we have successfully developed a multicomponent reaction protocol to convert H2S into S-alkyl dithiocarbamates under constant current conditions. No additional oxidants nor additional catalysts are required, and due to mild conditions, the reactions display a broad substrate scope, including varieties of thiols or disulfides.

14.
Inorg Chem ; 62(13): 5200-5206, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36959113

RESUMO

In the field of recycling CO2, the photocatalytic CO2 reduction reaction (CO2RR) is a typical example, and researchers have designed a variety of photocatalysts to improve the conversion rate of CO2 over the years. In this paper, two metal-oxygen clusters are designed and formulated as [Co3Zn(OH)6(SO4)]·4H2O (1) and [Ni3Zn(OH)6(SO4)]·4H2O (2). As for compound 1, the main structure is composed of {CoO6} octahedra connected by edge-sharing to form a two-dimensional layer, on which {ZnO4} and {SO4} tetrahedra are supported. More interestingly, compound 1 has outstanding photocatalytic activity, which is mainly attributed to the open-framework structure and the cobalt ions as active sites. Upon catalysis for eight hours, its maximum CO generation rate is 9982.13 µmol g-1 h-1, with a selectivity of 81.8%. Additionally, compound 1 takes on weak antiferromagnetic coupling due to Co(II) ions.

15.
Nanotechnology ; 34(18)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36724503

RESUMO

The quantum transport properties of defective two-dimensional (2D) GeP semiconductor nanodevice consisting of typical point defects, such as antisite defect, substitutional defect, and Schottky defect, have been studied by using density functional theory combined with non-equilibrium Green's function calculation. The antisite defect has indistinctive influences on electron transport. However, both substitutional and Schottky defect have introduced promising defect state at the Fermi level, indicating the possibility of improvement on the carrier transport. Our quantitative quantum transport calculations ofI-Vbbehavior have revealed that the electrical characters are enhanced. Moreover, the P atom vacancy could induce significant negative differential resistance phenomenon, and the physical mechanism is unveiled by detailed analysis. The transfer characteristic properties could be prominently improved by substitutional defect and vacancy defect. Most importantly, we have proposed a computational design of GeP-based electronic device with improved electrical performance by introducing vacancy defect. Our findings could be helpful to the practical application of novel 2D GeP semiconductor nanodevice in future.

16.
Mol Cell ; 60(6): 914-29, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687600

RESUMO

Multicellular organisms have multiple homologs of the yeast ATG8 gene, but the differential roles of these homologs in autophagy during development remain largely unknown. Here we investigated structure/function relationships in the two C. elegans Atg8 homologs, LGG-1 and LGG-2. lgg-1 is essential for degradation of protein aggregates, while lgg-2 has cargo-specific and developmental-stage-specific roles in aggregate degradation. Crystallography revealed that the N-terminal tails of LGG-1 and LGG-2 adopt the closed and open form, respectively. LGG-1 and LGG-2 interact differentially with autophagy substrates and Atg proteins, many of which carry a LIR motif. LGG-1 and LGG-2 have structurally distinct substrate binding pockets that prefer different residues in the interacting LIR motif, thus influencing binding specificity. Lipidated LGG-1 and LGG-2 possess distinct membrane tethering and fusion activities, which may result from the N-terminal differences. Our study reveals the differential function of two ATG8 homologs in autophagy during C. elegans development.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas Associadas aos Microtúbulos/química , Animais , Família da Proteína 8 Relacionada à Autofagia , Sítios de Ligação , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografia por Raios X , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
17.
J Nanobiotechnology ; 21(1): 309, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653406

RESUMO

Plant-derived exosome-like nanoparticles (PDENs) have been paid great attention in the treatment of ulcerative colitis (UC). As a proof of concept, we isolated and identified Portulaca oleracea L-derived exosome-like nanoparticles (PELNs) from edible Portulaca oleracea L, which exhibited desirable nano-size (~ 160 nm) and a negative zeta potential value (-31.4 mV). Oral administration of PELNs effectively suppressed the expressions of pro-inflammatory cytokines (TNF-α, IL-6, IL-12, and IL-1ß) and myeloperoxidase (MPO), increased levels of the anti-inflammatory cytokine (IL-10), and alleviated acute colitis in dextran sulfate sodium (DSS)-induced C57 mice and IL-10-/- mice. Notably, PELNs exhibited excellent stability and safety within the gastrointestinal tract and displayed specific targeting to inflamed sites in the colons of mice. Mechanistically, oral administration of PELNs played a crucial role in maintaining the diversity and balance of gut microbiota. Furthermore, PELNs treatment enhanced Lactobacillus reuteri growth and elevated indole derivative levels, which might activate the aryl-hydrocarbon receptor (AhR) in conventional CD4+ T cells. This activation downregulated Zbtb7b expression, leading to the reprogramming of conventional CD4+ T cells into double-positive CD4+CD8+T cells (DP CD4+CD8+ T cells). In conclusion, our findings highlighted the potential of orally administered PELNs as a novel, natural, and colon-targeted agent, offering a promising therapeutic approach for managing UC. Schematic illustration of therapeutic effects of oral Portulaca oleracea L -derived natural exosome-like nanoparticles (PELNs) on UC. PELNs treatment enhanced Lactobacillus reuteri growth and elevated indole derivative levels, which activate the aryl-hydrocarbon receptor (AhR) in conventional CD4+ T cells leading to downregulate the expression of Zbtb7b, reprogram of conventional CD4+ T cells into double-positive CD4+CD8+T cells (DP CD4+CD8+ T cells), and decrease the levels of pro-inflammatory cytokines.


Assuntos
Colite Ulcerativa , Colite , Exossomos , Nanopartículas , Portulaca , Animais , Camundongos , Interleucina-10 , Linfócitos T CD8-Positivos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Citocinas , Hidrocarbonetos , Proteínas de Ligação a DNA , Fatores de Transcrição
18.
Mikrochim Acta ; 190(1): 46, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604350

RESUMO

The design and construction of a visible light-driven photoelectrochemical (PEC) device is described based on a CdSe-Co3O4@TiO2 nanoflower (NF). Moreover, an application to the ultrasensitive detection of viruses, such as hepatitis E virus (HEV), HEV-like particles (HEV-LPs), and SARS-CoV-2 spike protein in complicated lysate solution, is demonstrated. The photocurrent response output of a PEC device based on CdSe-Co3O4@TiO2 is enhanced compared with the individual components, TiO2 and CdSe-Co3O4. This can be attributed to the CdSe quantum dot (QD) sensitization effect and strong visible light absorption to improve overall system stability. A robust oxygen-evolving catalyst (Co3O4) coupled at the hole-trapping site (CdSe) extends the interfacial carrier lifetime, and the energy conversion efficiency was improved. The effective hybridization between the antibody and virus resulted in a linear relationship between the change in photocurrent density and the HEV-LP concentration ranging from 10 fg mL-1 to 10 ng mL-1, with a detection limit of 3.5 fg mL-1. This CdSe-Co3O4@TiO2-based PEC device achieved considerable sensitivity, good specificity, and acceptable stability and demonstrated a significant ability to develop an upgraded device with affordable and portable biosensing capabilities.


Assuntos
COVID-19 , Compostos de Cádmio , Compostos de Selênio , Humanos , Luz , SARS-CoV-2 , Nanoestruturas
19.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047747

RESUMO

Myogenic differentiation is a complex biological process that is regulated by multiple factors, among which long noncoding RNAs (lncRNAs) play an essential role. However, in-depth studies on the regulatory mechanisms of long noncoding RNAs (lncRNAs) in myogenic differentiation are limited. In this study, we characterized the role of the novel lncRNA TCONS_00323213, which is upregulated during porcine skeletal muscle satellite cell (PSC) differentiation in myogenesis. We found that TCONS_00323213 affected the proliferation and differentiation of PSC in vitro. We performed quantitative polymerase chain reaction (qPCR), 5-ethynyl-20-deoxyuridine (EdU), western blotting, immunofluorescence staining, pull-down assays, and cleavage under targets and tagmentation (CUT and Tag) assays to clarify the effects and action mechanisms of TCONS_00323213. LncRNA TCONS_00323213 inhibited myoblast proliferation based on analyses of cell survival rates during PSC proliferation. Functional analyses revealed that TCONS_00323213 promotes cell differentiation and enhances myogenin (MyoG), myosin heavy chain (MyHC), and myocyte enhancer factor 2 (MEF2C) during myoblast differentiation. As determined by pull-down and RNA immunoprecipitation (RIP) assays, the lncRNA TCONS_00323213 interacted with PBX/Knotted Homeobox 2 (PKNOX2). CUT and Tag assays showed that PKNOX2 was significantly enriched on the MyoG promoter after lncRNA TCONS_00323213 knockdown. Our findings demonstrate that the interaction between lncRNA TCONS_00323213 and PKNOX2 relieves the inhibitory effect of PKNOX2 on the MyoG promoter, increases its expression, and promotes PSC differentiation. This novel role of lncRNA TCONS_00323213 sheds light on the molecular mechanisms by which lncRNAs regulate porcine myogenesis.


Assuntos
Desenvolvimento Muscular , RNA Longo não Codificante , Células Satélites de Músculo Esquelético , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , Desenvolvimento Muscular/genética , Diferenciação Celular/genética , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Suínos , Miogenina/genética , Miogenina/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Técnicas de Silenciamento de Genes
20.
J Hepatol ; 77(6): 1491-1503, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985547

RESUMO

BACKGROUND & AIMS: How hepatic steatosis progresses to non-alcoholic steatohepatitis (NASH) is complicated and remains unclear. The mortality factor 4-like protein 1 (MORF4L1, also called MRG15) was previously identified as a master nuclear chromatin remodeler in the rhythmic regulation of lipid synthesis gene expression in the liver. Whether it also contributes to the progression from liver steatosis to NASH is unclear. METHODS: We adopted 2 different murine NASH models, liver biopsies from patients with NASH, and primary mouse and human hepatocyte cultures for functional examination of MRG15 in NASH progression. Immunoprecipitation-mass spectrometry was applied to identify protein partners of MRG15, and CRISPR targeting was used for gene depletion in liver cells in vivo. RESULTS: The MRG15 level is increased in the livers of humans and mice with NASH. The inflammatory cytokines in NASH livers stabilize MRG15 by increasing its acetylation. Considerable amounts of MRG15 associate with the outer mitochondrial membrane, where it interacts with and deacetylates the mitochondrial Tu translation elongation factor (TUFM). Deacetylated TUFM, especially at the K82 and K91 sites, is subjected to accelerated degradation by the mitochondrial ClpXP protease system. Reduced liver TUFM consequently results in impaired mitophagy, increased oxidative stress and activation of the NLRP3 inflammasome pathway. Blocking MRG15 expression protects the liver from NASH progression by increasing the stability of liver TUFM. Liver samples from patients with NASH also display a clear reduction in TUFM level, which correlates with increased MRG15 expression. CONCLUSION: Collectively, these findings uncover a mitochondrial MRG15-TUFM regulatory pathway that contributes significantly to progression from simple steatosis to NASH, and which could potentially be targeted to treat NASH. LAY SUMMARY: The incidence of non-alcoholic fatty liver disease and its progressive form non-alcoholic steatohepatitis (NASH) is increasing, posing a significant global health challenge. Herein, we have uncovered the importance of the MRG15-TUFM pathway in NASH development. This pathway is active in the mitochondria (energy powerhouse of the cell) and could be targeted for the treatment of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Transativadores , Animais , Humanos , Camundongos , Proteínas Cromossômicas não Histona , Mitofagia , Peptídeo Hidrolases , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA