Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(10): 2037-2047, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37193756

RESUMO

Peroxisome proliferator-activated receptor alpha (PPARα) activation-induced hepatomegaly is accompanied by hepatocyte hypertrophy around the central vein (CV) area and hepatocyte proliferation around the portal vein (PV) area. However, the molecular mechanisms underlying this spatial change of hepatocytes remains unclear. In this study, we examined the characteristics and possible reasons for the zonation distinction of hypertrophy and proliferation during PPARα activation-induced mouse liver enlargement. Mice were injected with corn oil or a typical mouse PPARα agonist WY-14643 (100 mg·kg-1·d-1, i.p.) for 1, 2, 3, 5 or 10 days. At each time point, the mice were sacrificed after the final dose, and liver tissues and serum were harvested for analysis. We showed that PPARα activation induced zonal changes in hepatocyte hypertrophy and proliferation in the mice. In order to determine the zonal expression of proteins related to hepatocyte hypertrophy and proliferation in PPARα-induced liver enlargement, we performed digitonin liver perfusion to separately destroy the hepatocytes around the CV or PV areas, and found that PPARα activation-induced increase magnitude of its downstream targets such as cytochrome P450 (CYP) 4 A and acyl-coenzyme A oxidase 1 (ACOX1) levels around the CV area were higher compared with those around the PV area. Upregulation of proliferation-related proteins such as cell nuclear antigen (PCNA) and cyclin A1 (CCNA1) after WY-14643-induced PPARα activation mainly occurred around the PV area. This study reveals that the zonal expression of PPARα targets and proliferation-related proteins is responsible for the spatial change of hepatocyte hypertrophy and proliferation after PPARα activation. These findings provide a new insight into the understanding of PPARα activation-induced liver enlargement and regeneration.


Assuntos
Hepatócitos , PPAR alfa , Animais , Camundongos , Proliferação de Células , Hepatócitos/metabolismo , Hepatomegalia/induzido quimicamente , Hepatomegalia/metabolismo , Hipertrofia/induzido quimicamente , Hipertrofia/metabolismo , Fígado/metabolismo , Camundongos Knockout , PPAR alfa/agonistas
2.
Phytomedicine ; 84: 153520, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33662920

RESUMO

BACKGROUND: Schisandrol B (SolB) is one of the bioactive components from a traditional Chinese medicine Schisandra chinensis or Schisandra sphenanthera. It has been demonstrated that SolB exerts hepatoprotective effects against drug-induced liver injury and promotes liver regeneration. It was found that SolB can induce hepatomegaly but the involved mechanisms remain unknown. PURPOSE: This study aimed to explore the mechanisms involved in SolB-induced hepatomegaly. METHODS: Male C57BL/6 mice were injected intraperitoneally with SolB (100 mg/kg) for 5 days. Serum and liver samples were collected for biochemical and histological analyses. The mechanisms of SolB were investigated by qRT-PCR and western blot analyses, luciferase reporter gene assays and immunofluorescence. RESULTS: SolB significantly increased hepatocyte size and proliferation, and then promoted liver enlargement without liver injury and inflammation. SolB transactivated human PXR, activated PXR in mice and upregulated hepatic expression of its downstream proteins, such as CYP3A11, CYP2B10 and UGT1A1. SolB also significantly enhanced nuclear translocation of PXR and YAP in human cell lines. YAP signal pathway was activated by SolB in mice. CONCLUSION: These findings demonstrated that SolB can significantly induce liver enlargement, which is associated with the activation of PXR and YAP pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclo-Octanos/toxicidade , Dioxóis/toxicidade , Hepatomegalia/induzido quimicamente , Lignanas/toxicidade , Receptor de Pregnano X/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Receptor de Pregnano X/genética , Schisandra/química , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA