Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(11): 5131-5140, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37191492

RESUMO

Selenium (Se) and tellurium (Te) nanomaterials with novel chain-like structures have attracted widespread interest owing to their intriguing properties. Unfortunately, the still-unclear catalytic mechanisms have severely limited the development of biocatalytic performance. In this work, we developed chitosan-coated Se nanozymes with a 23-fold higher antioxidative activity than Trolox and bovine serum albumin coated Te nanozymes with stronger prooxidative biocatalytic effects. Based on density functional theory calculations, we first propose that the Se nanozyme with Se/Se2- active centers favored reactive oxygen species (ROS) clearance via a LUMO-mediated mechanism, while the Te nanozyme with Te/Te4+ active centers promoted ROS production through a HOMO-mediated mechanism. Furthermore, biological experiments confirmed that the survival rate of γ-irritated mice treated with the Se nanozyme was maintained at 100% for 30 days by inhibiting oxidation. However, the Te nanozyme had the opposite biological effect via promoting radiation oxidation. The present work provides a new strategy for improving the catalytic activities of Se and Te nanozymes.


Assuntos
Biocatálise , Telúrio/química , Selênio/química , Espécies Reativas de Oxigênio/química , Nanopartículas/química , Antioxidantes/química , Animais , Camundongos , Oxirredução
2.
J Colloid Interface Sci ; 658: 540-552, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128197

RESUMO

Design of engineered cells to target and deliver nanodrugs to the hard-to-reach regions has become an exciting research area. However, the limited penetration and retention of cell-based carriers in tumor tissue restricted their therapeutic efficiency. Inspired by the enhanced delivery behavior of mobile micro/nanomotors, herein, urease-powered platelet cell motors (PLT@Au@Urease) capable of active locomotion, tumor targeting, and radiosensitizers delivery were designed for boosting radiosensitization. The engineered platelet cell motors were constructed by in situ synthesis and loading of radiosensitizers gold nanoparticles in platelets, and then conjugation with urease as the engine. Under physiological concentration of urea, thrust around PLT@Au@Urease motors can be generated via the biocatalytic reactions of urease, leading to rapid tumor cell targeting and enhanced cellular uptake of radiosensitizers. Encouragingly, in comparison with engineered PLT without propulsion capability (PLT@Au), the self-propelled PLT@Au@Urease motors could significantly increase intracellular ROS level and exacerbate nuclear DNA damage induced by γ-radiation, resulting in a remarkably high sensitization enhancement rate (1.89) than that of PLT@Au (1.08). In vivo experiments with 4 T1-bearing mice demonstrated that PLT@Au@Urease in combination with radiation therapy possessed good antitumor performance. Such an intelligent cell motor would provide a promising approach to enhance radiosensitization and broaden the applications of cell motor-based delivery systems.


Assuntos
Nanopartículas Metálicas , Neoplasias , Animais , Camundongos , Ouro/farmacologia , Urease , Neoplasias/radioterapia
3.
ACS Appl Mater Interfaces ; 14(49): 54587-54597, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468174

RESUMO

Superoxide dismutase (SOD) is one of the major antioxidants in vivo and is expected to play critical roles on the defense against reactive oxygen species (ROS)-mediated damages, such as ionizing radiation damages. Herein, inspired by the function and structure of natural SODs and cerium oxide nanozymes, two monovalent cerium-based metal organic frameworks (Ce-MOFs), CeIIIBTC and CeIVBTC, were designed for superoxide radical (O2•-) elimination and ionizing radiation protection. These two Ce-MOFs selectively scavenge O2•- and are excellent SOD mimics. Like natural SODs and cerium oxide nanozymes, the SOD-like catalytic mechanism of Ce-MOFs involves a cycle between Ce(IV) and Ce(III). Furthermore, by constructing monovalent Ce-MOFs, we found that high-valent CeIVBTC are more effective SOD-like nanozymes compared to CeIIIBTC. With smaller size, better monodispersity, and more effective SOD-like activity, CeIVBTC nanozymes were further applied for ionizing radiation protection. Both in vitro and in vivo results demonstrated that CeIVBTC nanozymes could efficiently scavenge ROS, prevent cells from γ-ray radiation-induced cell viability decrease and DNA damages, and improve the survival rate of irradiated mice by recovering the bone marrow DNA damage and alleviating oxidative stress of tissues. The protective effect and good biocompatibility of CeIVBTC nanozymes will enable the development of Ce-MOFs-based radioprotectants and facilitate treatment of other ROS-related diseases.


Assuntos
Cério , Estruturas Metalorgânicas , Proteção Radiológica , Camundongos , Animais , Estruturas Metalorgânicas/química , Espécies Reativas de Oxigênio , Cério/farmacologia , Cério/química , Superóxido Dismutase , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA