RESUMO
The practical application of Li-S batteries is still severely restricted by poor cyclic performance caused by the intrinsic polysulfides shuttle effect, which is even more severe under the high-temperature condition owing to the inevitable increase of polysulfides' solubility and diffusion rate. Herein, tungsten-doped vanadium dioxide (W-VO2) micro-flowers are employed with first-order metal-insulator phase transition (MIT) property as a robust and multifunctional modification layer to hamper the shuttle effect and simultaneously improve the thermotolerance of the common separator. Tungsten doping significantly reduces the transition temperature from 68 to 35 °C of vanadium dioxide, which renders the W-VO2 easier to turn from the insulating monoclinic phase into the metallic rutile phase. The systematic experiments and theoretical analysis demonstrate that the temperature-induced in-suit MIT property endows the W-VO2 catalyst with strong chemisorption against polysulfides, low energy barrier for liquid-to-solid conversion, and outstanding diffusion kinetics of Li-ion under high temperatures. Benefiting from these advantages, the Li-S batteries with W-VO2 modified separator exhibit significantly improved rate and long-term cyclic performance under 50 °C. Remarkably, even at an elevated temperature (80 °C), they still exhibit superior electrochemical performance. This work opens a rewarding avenue to use phase-changing materials for high-temperature Li-S batteries.
RESUMO
Polysulfide shuttle effect and sluggish sulfur reaction kinetics severely impede the cycling stability and sulfur utilization of lithium-sulfur (Li-S) batteries. Modulating d-band electronic structures of molybdenum disulfide electrocatalysts via p/n doping is promising to boost polysulfide conversion and suppress polysulfide migration in lithium-sulfur batteries. Herein, p-type V-doped MoS2 (V-MoS2 ) and n-type Mn-doped MoS2 (Mn-MoS2 ) catalysts are well-designed. Experimental results and theoretical analyses reveal that both of them significantly increase the binding energy of polysulfides on the catalysts' surface and accelerate the sluggish conversion kinetics of sulfur species. Particularly, the p-type V-MoS2 catalyst exhibits a more obvious bidirectional catalytic effect. Electronic structure analysis further demonstrates that the superior anchoring and electrocatalytic activities are originated from the upward shift of the d-band center and the optimized electronic structure induced by duplex metal coupling. As a result, the Li-S batteries with V-MoS2 modified separator exhibit a high initial capacity of 1607.2 mAh g-1 at 0.2 C and excellent rate and cycling performance. Moreover, even at a high sulfur loading of 6.84 mg cm-2 , a favorable initial areal capacity of 8.98 mAh cm-2 is achieved at 0.1 C. This work may bring widespread attention to atomic engineering in catalyst design for high-performance Li-S batteries.
RESUMO
The low utilization rate of active materials, shuttle effect of lithium polysulfides (LiPSs), and slow reaction kinetics lead to the extremely low efficiency and poor high current cycle stability of lithium sulfur batteries (Li-S batteries). In this paper, a self-supporting multicomponent hierarchical network aerogel is proposed as the modified cathode (S/GO@MX@VS4 ). It consists of graphene (GO) and MXene nanosheets (MX) loaded with VS4 nanoparticles. The experimental results and first-principles calculations show that the GO@MX@VS4 aerogel has strong adsorption and reversible conversion effects on LiPSs. It can not only inhibit the shuttle effect and improve the utilization rate of active substances by keeping the chain crystal structure of VS4 , but also promote the reversibility and kinetics of the reaction by accelerating the liquid-solid transformation in the reduction process and the decomposition of insoluble Li2 S in the oxidation process. The GO@MX@VS4 aerogel modified cathode with a multicomponent synergy exhibits the capacity ratios (Q1 /Q2 ) at different discharge stages is close to the theoretical value (1:2.8), and the capacity decay per cycle is 0.019% in 1200 cycles at 5C. Also, a high areal capacity of 6.90 mAh cm-2 is provided even at high sulfur loading (7.39 mg cm-2 ) and low electrolyte/sulfur ratio (E/S, 8.0 µL mg-1 ).
RESUMO
Neutral electrosynthesis of H2O2via the 2e- ORR is attractive for numerous applications, but the low activity and high cost of electrocatalysts have become important constraints. Therefore, the development of cheap and efficient electrocatalysts for the 2e- ORR is necessary. Herein, we report the embedding of transition metal single atoms (TM SAs) in g-C3N4 nanosheets (CNNS). The introduction of TM SAs increases the N-CîN content and reduces the C-C/CîC content in CNNS, which contributes to the increased selectivity of TM SA/CNNS for the 2e- ORR. TM SA is the main reason for the enhanced activity of the 2e- ORR. Based on the results obtained by replacing a series of TM SA, the Ni0.10 SA/CNNS with optimal N-CîN content exhibited the best selectivity (â¼98%) and highest yield of H2O2 (â¼503 mmol gcat-1 h-1), which is â¼14.6 times higher than that of CNNS (â¼34.4 mmol gcat-1 h-1). Other TM SA/CNNS also exhibited high activity and selectivity. This study demonstrates the ability of TM SA to modulate the selectivity and activity of CNNS, making it a promising candidate for the 2e- ORR and providing more reference ideas for the preparation of H2O2.
RESUMO
Transition metal sulfide (TMS) CoS2 is considered an ideal anode material for new-generation lithium-ion batteries (LIBs) because of its high specific capacity, high electrochemical activity, and low cost. However, CoS2 is prone to volume expansion and structural collapse when it participates in the internal conversion reaction of the battery, which limits its practical application. After analyzing the failure mechanism of CoS2 as the anode material of LIBs, the concept of nanoengineered materials is introduced here. CoS2 particles are nanosized and stabilized by constructing a composite structure on an alkali-treated two-dimensional Ti3C2 Mxene conductive network. Both experiments and theoretical calculations show that special Ti-O-Co bonds are formed at the interface of the Ti3C2/CoS2 composite through oxygen-containing functional groups. Ti-O-Co bonding with adjustable electronic characteristics can effectively promote the utilization rate of anode materials, electronic conductivity, and ionic diffusivity and thus enhance the redox reaction kinetics of the device. When the Ti3C2/CoS2 composite is used as the anode material for LIBs, it still provides a high specific capacity of 405.8 mAh g-1 after 100 cycles at 0.1 A g-1. After running for 1000 cycles at a high current of 1 A g-1, the capacity retention is still close to 100%. Also, high cycle stability under the condition of highly active material loading (10.58 mg cm-2) and low electrolyte/active material ratio (10 µL mg-1) is achieved. This work provides a new idea for the development of commercial LIBs as anode materials.
RESUMO
Efficient electrocatalysts and catalytic mechanisms remain a pressing need in Li-S electrochemistry to address lithium polysulfide (LiPS) shuttling and enhance conversion kinetics. This study presents the development of multifunctional VO2@rGO heterostructures, incorporating interfacial built-in electric field (BIEF) enhancement, as a Mott-Schottky electrocatalyst for Li-S batteries. Electrochemical experiments and theoretical analysis demonstrate that the interfacial BIEF between VO2 and rGO induces self-driven charge redistribution, resulting in accelerated charge transport rates, enhanced LiPS chemisorption, reduced energy barriers for Li2S nucleation/decomposition, and improved Li-ion diffusion behavior. The Mott-Schottky electrocatalyst, combining the strengths of VO2's anchoring ability, rGO's metallic conductivity, and BIEF's optimized charge transport, exhibits an outstanding "trapping-conversion" effect. The modified Li-S battery with a VO2@rGO-modified separator achieves a highly reversible capacity of 558.0 mAh g-1 at 2 C over 600 cycles, with an average decay rate of 0.048% per cycle. This research offers valuable insights into the design of Mott-Schottky electrocatalysts and their catalytic mechanisms, advancing high-efficiency Li-S batteries and other multielectron energy storage and conversion devices.
RESUMO
Manganese sulfide (MnS) has been found to be a suitable electrode material for lithium-ion batteries (LIBs) owing to its considerable theoretical capacity, high electrochemical activity, and low discharge voltage platform, while its poor electrical conductivity and severe pulverization caused by volume expansion of the material limit its practical application. To improve the rate performance and cycle stability of MnS in LIBs, the structure-control strategy has been used to design and fabricate new anode materials. Herein, the MnS@MXene@CNF (MMC, CNFs means carbon nanofibers) electrode has been prepared by electrospinning and a subsequent high-temperature annealing process. The MMC electrode exhibits excellent cyclic stability with a capacity retention rate close to 100% after 1000 cycles at 1000 mA/g and an improved rate performance with a specific capacity up to 500 mAh/g at a high current density of 5000 mA/g, much higher than the 308 mAh/g of the MnS@CNF (MC) electrode. The elevated electrochemical performance of the MMC electrode not only benefits from the unique structure of MnS nanoparticles evenly dispersed in the well-designed flexible self-supporting three-dimensional (3D) CNF network but, more importantly, also benefits from the formation of sulfur-bridged Mn-S-C bonds at the MnS/MXene interface. The newly formed bonds between MnS and MXene nanosheets can stabilize the structure of MnS near the interfaces and provide a channel for fast charge transfer, which notably increase both the reversibility and the rate of the conversion reaction during the charge/discharge process. This work may pave a new path for designing stable and self-supporting anodes for high-performance LIBs.
RESUMO
The shuttle effect of soluble lithium polysulfides (LiPSs) between electrodes and slow reaction kinetics lead to extreme inefficiency and poor high current cycling stability, which limits the commercial application of Li-S batteries. Herein, the multi-dimensional composite frame has been proposed as the modified separator (MCCoS/PP) of Li-S battery, which is composed of CoS2 nanoparticles on alkali-treated MXene nanosheets and carbon nanotubes. Both experiments and theoretical calculations show that bifunctional catalytic activity can be achieved on the MCCoS/PP separator. It can not only promote the liquid-solid conversion in the reduction process, but also accelerate the decomposition of insoluble Li2S in the oxidation process. In addition, LiPSs shuttle effect has been inhibited without a decrease in lithium-ion transference numbers. Simultaneously, the MCCoS/PP separator with good LiPSs adsorption capability arouses redistribution and fixing of active substances, which is also beneficial to the rate performance and cycling stability. The Li-S batteries with the MCCoS/PP separator have a specific capacity of 368.6 mAh g-1 at 20C, and the capacity decay per cycle is only 0.033% in 1000 cycles at 7C. Also, high area capacity (6.34 mAh cm-2) with a high sulfur loading (7.7 mg cm-2) and a low electrolyte/sulfur ratio (7.5 µL mg-1) is achieved.
RESUMO
The interlayer modification and the intercalation pseudocapacitance have been combined in vanadium oxide electrode for aqueous zinc-ion batteries. Intercalation pseudocapacitive hydrated vanadium oxide Mn1.4 V10 O24 ·12H2 O with defective crystal structure, interlayer water, and large interlayer distance has been prepared by a spontaneous chemical synthesis method. The inserted Mn2+ forms coordination bonds with the oxygen of the host material and strengthens the interaction between the layers, preventing damage to the structure. Combined with the experimental data and DFT calculation, it is found that Mn2+ refines the structure stability, adjusts the electronic structure, and improves the conductivity of hydrated vanadium oxide. Also, Mn2+ changes the migration path of Zn2+ , reduces the migration barrier, and improves the rate performance. Therefore, Mn2+ -inserted hydrated vanadium oxide electrode delivers a high specific capacity of 456 mAh g-1 at 0.2 A g-1 , 173 mAh g-1 at 40 A g-1 , and a capacity retention of 80% over 5000 cycles at 10 A g-1 . Furthermore, based on the calculated zinc ion mobility coefficient and Zn(H2 O)n 2+ diffusion energy barrier, the possible migration behavior of Zn(H2 O)n 2+ in vanadium oxide electrode has also been speculated, which will provide a new reference for understanding the migration behavior of hydrated zinc-ion.