RESUMO
Measurements of the (2)H((-->)e,e(')p)n reaction were performed with the out-of-plane magnetic spectrometers (OOPS) at the MIT-Bates Linear Accelerator. The longitudinal-transverse, f(LT) and f(')(LT), and the transverse-transverse, f(TT), interference responses at a missing momentum of 210 MeV/c were simultaneously extracted in the dip region at Q2 = 0.15 (GeV/c)(2). In comparison to models of deuteron electrodisintegration, the data clearly reveal strong effects of relativity and final-state interactions and the importance of two-body meson-exchange currents and isobar configurations. We demonstrate that such effects can be disentangled by extracting these responses using the novel out-of-plane technique.
RESUMO
High-precision 1H(e,e'p)pi(0) measurements at Q2 = 0.126 (GeV/c)2 are reported, which allow the determination of quadrupole amplitudes in the gamma*N-->Delta transition; they simultaneously test the reliability of electroproduction models. The derived quadrupole-to-dipole ( I = 3/2) amplitude ratios, R(SM) = (-6.5+/-0.2(stat+sys)+/-2.5(mod))% and R(EM) = (-2.1+/-0.2(stat+sys)+/-2.0(mod))%, are dominated by model error. Previous R(SM) and R(EM) results should be reconsidered after the model uncertainties associated with the method of their extraction are taken into account.