Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
PLoS Biol ; 18(7): e3000564, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32701952

RESUMO

Amyloids are protein aggregates with a highly ordered spatial structure giving them unique physicochemical properties. Different amyloids not only participate in the development of numerous incurable diseases but control vital functions in archaea, bacteria and eukarya. Plants are a poorly studied systematic group in the field of amyloid biology. Amyloid properties have not yet been demonstrated for plant proteins under native conditions in vivo. Here we show that seeds of garden pea Pisum sativum L. contain amyloid-like aggregates of storage proteins, the most abundant one, 7S globulin Vicilin, forms bona fide amyloids in vivo and in vitro. Full-length Vicilin contains 2 evolutionary conserved ß-barrel domains, Cupin-1.1 and Cupin-1.2, that self-assemble in vitro into amyloid fibrils with similar physicochemical properties. However, Cupin-1.2 fibrils unlike Cupin-1.1 can seed Vicilin fibrillation. In vivo, Vicilin forms amyloids in the cotyledon cells that bind amyloid-specific dyes and possess resistance to detergents and proteases. The Vicilin amyloid accumulation increases during seed maturation and wanes at germination. Amyloids of Vicilin resist digestion by gastrointestinal enzymes, persist in canned peas, and exhibit toxicity for yeast and mammalian cells. Our finding for the first time reveals involvement of amyloid formation in the accumulation of storage proteins in plant seeds.


Assuntos
Amiloide/metabolismo , Pisum sativum/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/metabolismo , Amiloide/ultraestrutura , Detergentes/farmacologia , Escherichia coli/metabolismo , Íons , Pancreatina/metabolismo , Pisum sativum/efeitos dos fármacos , Pepsina A/metabolismo , Agregados Proteicos , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/farmacologia , Proteínas de Armazenamento de Sementes/ultraestrutura
2.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269869

RESUMO

Drought dramatically affects crop productivity worldwide. For legumes this effect is especially pronounced, as their symbiotic association with rhizobia is highly-sensitive to dehydration. This might be attributed to the oxidative stress, which ultimately accompanies plants' response to water deficit. Indeed, enhanced formation of reactive oxygen species in root nodules might result in up-regulation of lipid peroxidation and overproduction of reactive carbonyl compounds (RCCs), which readily modify biomolecules and disrupt cell functions. Thus, the knowledge of the nodule carbonyl metabolome dynamics is critically important for understanding the drought-related losses of nitrogen fixation efficiency and plant productivity. Therefore, here we provide, to the best of our knowledge, for the first time a comprehensive overview of the pea root nodule carbonyl metabolome and address its alterations in response to polyethylene glycol-induced osmotic stress as the first step to examine the changes of RCC patterns in drought treated plants. RCCs were extracted from the nodules and derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). The relative quantification of CHH-derivatives by liquid chromatography-high resolution mass spectrometry with a post-run correction for derivative stability revealed in total 194 features with intensities above 1 × 105 counts, 19 of which were down- and three were upregulated. The upregulation of glyceraldehyde could accompany non-enzymatic conversion of glyceraldehyde-3-phosphate to methylglyoxal. The accumulation of 4,5-dioxovaleric acid could be the reason for down-regulation of porphyrin metabolism, suppression of leghemoglobin synthesis, inhibition of nitrogenase and degradation of legume-rhizobial symbiosis in response to polyethylene glycol (PEG)-induced osmotic stress effect. This effect needs to be confirmed with soil-based drought models.


Assuntos
Fabaceae , Rhizobium , Fabaceae/metabolismo , Gliceraldeído , Fixação de Nitrogênio , Pressão Osmótica , Pisum sativum/metabolismo , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose
3.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445801

RESUMO

This study focused on the interactions of pea (Pisum sativum L.) plants with phytopathogenic and beneficial fungi. Here, we examined whether the lysin-motif (LysM) receptor-like kinase PsLYK9 is directly involved in the perception of long- and short-chain chitooligosaccharides (COs) released after hydrolysis of the cell walls of phytopathogenic fungi and identified in arbuscular mycorrhizal (AM) fungal exudates. The identification and analysis of pea mutants impaired in the lyk9 gene confirmed the involvement of PsLYK9 in symbiosis development with AM fungi. Additionally, PsLYK9 regulated the immune response and resistance to phytopathogenic fungi, suggesting its bifunctional role. The existence of co-receptors may provide explanations for the potential dual role of PsLYK9 in the regulation of interactions with pathogenic and AM fungi. Co-immunoprecipitation assay revealed that PsLYK9 and two proposed co-receptors, PsLYR4 and PsLYR3, can form complexes. Analysis of binding capacity showed that PsLYK9 and PsLYR4, synthesized as extracellular domains in insect cells, were able to bind the deacetylated (DA) oligomers CO5-DA-CO8-DA. Our results suggest that the receptor complex consisting of PsLYK9 and PsLYR4 can trigger a signal pathway that stimulates the immune response in peas. However, PsLYR3 seems not to be involved in the perception of CO4-5, as a possible co-receptor of PsLYK9.


Assuntos
Quitina/análogos & derivados , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Animais , Linhagem Celular , Parede Celular/metabolismo , Parede Celular/microbiologia , Quitina/metabolismo , Quitosana , Hidrólise , Insetos/metabolismo , Micorrizas/metabolismo , Oligossacarídeos , Pisum sativum/microbiologia , Imunidade Vegetal/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Células Sf9 , Transdução de Sinais/fisiologia , Simbiose/fisiologia
4.
Mol Plant Microbe Interact ; 33(10): 1232-1241, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32686981

RESUMO

A collection of rhizobial strains isolated from root nodules of the narrowly endemic legume species Oxytropis erecta, O. anadyrensis, O. kamtschatica, and O. pumilio originating from the Kamchatka Peninsula (Russian Federation) was obtained. Analysis of the 16S ribosomal RNA gene sequence showed a significant diversity of isolates belonging to families Rhizobiaceae (genus Rhizobium), Phyllobacteriaceae (genera Mesorhizobium, Phyllobacterium), and Bradyrhizobiaceae (genera Bosea, Tardiphaga). A plant nodulation assay showed that only strains belonging to genus Mesorhizobium could form nitrogen-fixing nodules on Oxytropis plants. The strains M. loti 582 and M. huakuii 583, in addition to symbiotic clusters, possessed genes of the type III and type VI secretion systems (T3SS and T6SS, respectively), which can influence the host specificity of strains. These strains formed nodules of two types (elongated and rounded) on O. kamtschatica roots. We suggest this phenomenon may result from Nod factor-dependent and -independent nodulation strategies. The obtained strains are of interest for further study of the T3SS and T6SS gene function and their role in the development of rhizobium-legume symbiosis. The prospects of using rhizobia having both gene systems related to symbiotic and nonsymbiotic nodulation strategies to enhance the efficiency of plant-microbe interactions by expanding the host specificity and increasing nodulation efficiency are discussed.


Assuntos
Bradyrhizobiaceae , Mesorhizobium , Oxytropis/microbiologia , Rhizobium , Simbiose , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo VI/genética , Bradyrhizobiaceae/genética , Mesorhizobium/genética , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia
5.
Ann Bot ; 125(6): 905-923, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32198503

RESUMO

BACKGROUND AND AIMS: Recent findings indicate that Nod factor signalling is tightly interconnected with phytohormonal regulation that affects the development of nodules. Since the mechanisms of this interaction are still far from understood, here the distribution of cytokinin and auxin in pea (Pisum sativum) nodules was investigated. In addition, the effect of certain mutations blocking rhizobial infection and subsequent plant cell and bacteroid differentiation on cytokinin distribution in nodules was analysed. METHODS: Patterns of cytokinin and auxin in pea nodules were profiled using both responsive genetic constructs and antibodies. KEY RESULTS: In wild-type nodules, cytokinins were found in the meristem, infection zone and apical part of the nitrogen fixation zone, whereas auxin localization was restricted to the meristem and peripheral tissues. We found significantly altered cytokinin distribution in sym33 and sym40 pea mutants defective in IPD3/CYCLOPS and EFD transcription factors, respectively. In the sym33 mutants impaired in bacterial accommodation and subsequent nodule differentiation, cytokinin localization was mostly limited to the meristem. In addition, we found significantly decreased expression of LOG1 and A-type RR11 as well as KNOX3 and NIN genes in the sym33 mutants, which correlated with low cellular cytokinin levels. In the sym40 mutant, cytokinins were detected in the nodule infection zone but, in contrast to the wild type, they were absent in infection droplets. CONCLUSIONS: In conclusion, our findings suggest that enhanced cytokinin accumulation during the late stages of symbiosis development may be associated with bacterial penetration into the plant cells and subsequent plant cell and bacteroid differentiation.


Assuntos
Infecções , Rhizobium , Diferenciação Celular , Citocininas , Regulação da Expressão Gênica de Plantas , Humanos , Mutação , Pisum sativum , Células Vegetais , Raízes de Plantas , Simbiose
6.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271881

RESUMO

For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.


Assuntos
Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Sementes/metabolismo , Cromatografia Líquida , Biologia Computacional/métodos , Humanos , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Fluxo de Trabalho
7.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952342

RESUMO

Protein glycation is usually referred to as an array of non-enzymatic post-translational modifications formed by reducing sugars and carbonyl products of their degradation. The resulting advanced glycation end products (AGEs) represent a heterogeneous group of covalent adducts, known for their pro-inflammatory effects in mammals, and impacting on pathogenesis of metabolic diseases and ageing. In plants, AGEs are the markers of tissue ageing and response to environmental stressors, the most prominent of which is drought. Although water deficit enhances protein glycation in leaves, its effect on seed glycation profiles is still unknown. Moreover, the effect of drought on biological activities of seed protein in mammalian systems is still unstudied with respect to glycation. Therefore, here we address the effects of a short-term drought on the patterns of seed protein-bound AGEs and accompanying alterations in pro-inflammatory properties of seed protein in the context of seed metabolome dynamics. A short-term drought, simulated as polyethylene glycol-induced osmotic stress and applied at the stage of seed filling, resulted in the dramatic suppression of primary seed metabolism, although the secondary metabolome was minimally affected. This was accompanied with significant suppression of NF-kB activation in human SH-SY5Y neuroblastoma cells after a treatment with protein hydrolyzates, isolated from the mature seeds of drought-treated plants. This effect could not be attributed to formation of known AGEs. Most likely, the prospective anti-inflammatory effect of short-term drought is related to antioxidant effect of unknown secondary metabolite protein adducts, or down-regulation of unknown plant-specific AGEs due to suppression of energy metabolism during seed filling.


Assuntos
Secas , Metabolômica/métodos , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Sementes/metabolismo , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Cromatografia Gasosa-Espectrometria de Massas , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Humanos , NF-kappa B/metabolismo , Estresse Fisiológico
8.
Int J Syst Evol Microbiol ; 69(9): 2687-2695, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31166161

RESUMO

Two Gram-stain-negative strains, RCAM04680T and RCAM04685, were isolated from root nodules of the relict legume Caragana jubata (Pall.) Poir. originating from the south-western shore of Lake Khuvsgul (Mongolia). The 16S rRNA gene (rrs) sequencing data showed that these novel isolates belong to the genus Bosea and are phylogenetically closest to the type strains Bosea lathyri LMG 26379T, Bosea vaviloviae LMG 28367T, Bosea massiliensis LMG 26221T and Bosea lupini LMG 26383T (the rrs-similarity levels were 98.7-98.8 %). The recA gene of strain RCAM04680T showed the highest sequence similarity to the type strain B. lupini LMG 26383T (95.4 %), while its atpD gene was closest to that of B. lathyri LMG 26379T (94.4 %). The ITS, dnaK and gyrB sequences of this isolate were most similar to the B. vaviloviae LMG 28367T (86.8 % for ITS, 90.4 % for the other genes). The most abundant fatty acid was C18 : 1ω7c (40.8 %). The whole genomes of strains RCAM04680T and RCAM04685 were identical (100 % average nucleotide identity). The highest average nucleotide identity value (82.8 %) was found between the genome of strain RCAM04680T and B. vaviloviae LMG 28367T. The common nodABC genes required for legume nodulation were absent in both strains; however, some other symbiotic nol, nod, nif and fix genes were detected. Based on the genetic study, as well as analyses of the whole-cell fatty acid compositions and phenotypic properties, a new species, Boseacaraganae sp. nov. (type strain RCAM04680T (=LMG 31125T), is proposed.


Assuntos
Bradyrhizobiaceae/classificação , Caragana/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Mongólia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
9.
Int J Mol Sci ; 20(7)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939810

RESUMO

Lysin-motif receptor-like kinase PsK1 is involved in symbiosis initiation and the maintenance of infection thread (IT) growth and bacterial release in pea. We verified PsK1 specificity in relation to the Nod factor structure using k1 and rhizobial mutants. Inoculation with nodO and nodE nodO mutants significantly reduced root hair deformations, curling, and the number of ITs in k1-1 and k1-2 mutants. These results indicated that PsK1 function may depend on Nod factor structures. PsK1 with replacement in kinase domain and PsSYM10 co-production in Nicotiana benthamiana leaves did not induce a hypersensitive response (HR) because of the impossibility of signal transduction into the cell. Replacement of P169S in LysM3 domain of PsK1 disturbed the extracellular domain (ECD) interaction with PsSYM10's ECD in Y2H system and reduced HR during the co-production of full-length PsK1 and PsSYM0 in N. benthamiana. Lastly, we explored the role of PsK1 in symbiosis with arbuscular mycorrhizal (AM) fungi; no significant differences between wild-type plants and k1 mutants were found, suggesting a specific role of PsK1 in legume⁻rhizobial symbiosis. However, increased sensitivity to a highly aggressive Fusarium culmorum strain was found in k1 mutants compared with the wild type, which requires the further study of the role of PsK1 in immune response regulation.


Assuntos
Variação Estrutural do Genoma , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Simbiose , Fusarium/patogenicidade , Micorrizas/genética , Pisum sativum/microbiologia , Proteínas de Plantas/química , Domínios Proteicos , Proteínas Quinases/química , Rhizobium/patogenicidade , Nicotiana/genética , Nicotiana/microbiologia
10.
Molecules ; 24(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018578

RESUMO

Legume crops represent the major source of food protein and contribute to human nutrition and animal feeding. An essential improvement of their productivity can be achieved by symbiosis with beneficial soil microorganisms-rhizobia (Rh) and arbuscular mycorrhizal (AM) fungi. The efficiency of these interactions depends on plant genotype. Recently, we have shown that, after simultaneous inoculation with Rh and AM, the productivity gain of pea (Pisum sativum L) line K-8274, characterized by high efficiency of interaction with soil microorganisms (EIBSM), was higher in comparison to a low-EIBSM line K-3358. However, the molecular mechanisms behind this effect are still uncharacterized. Therefore, here, we address the alterations in pea seed proteome, underlying the symbiosis-related productivity gain, and identify 111 differentially expressed proteins in the two lines. The high-EIBSM line K-8274 responded to inoculation by prolongation of seed maturation, manifested by up-regulation of proteins involved in cellular respiration, protein biosynthesis, and down-regulation of late-embryogenesis abundant (LEA) proteins. In contrast, the low-EIBSM line K-3358 demonstrated lower levels of the proteins, related to cell metabolism. Thus, we propose that the EIBSM trait is linked to prolongation of seed filling that needs to be taken into account in pulse crop breeding programs. The raw data have been deposited to the ProteomeXchange with identifier PXD013479.


Assuntos
Regulação da Expressão Gênica de Plantas , Pisum sativum/genética , Proteínas de Plantas/isolamento & purificação , Proteoma/isolamento & purificação , Sementes/genética , Simbiose/genética , Bactérias/crescimento & desenvolvimento , Biomassa , Cromatografia Líquida de Alta Pressão , Fungos/fisiologia , Ontologia Genética , Genótipo , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Micorrizas/fisiologia , Pisum sativum/química , Pisum sativum/metabolismo , Pisum sativum/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Nodulação/genética , Proteoma/classificação , Proteoma/genética , Proteômica/métodos , Sementes/química , Sementes/metabolismo , Microbiologia do Solo , Espectrometria de Massas em Tandem
11.
Mol Plant Microbe Interact ; 31(8): 833-841, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29498565

RESUMO

Ten rhizobial strains were isolated from root nodules of a relict legume Oxytropis popoviana Peschkova. For identification of the isolates, sequencing of rrs, the internal transcribed spacer region, and housekeeping genes recA, glnII, and rpoB was used. Nine fast-growing isolates were Mesorhizobium-related; eight strains were identified as M. japonicum and one isolate belonged to M. kowhaii. The only slow-growing isolate was identified as a Bradyrhizobium sp. Two strains, M. japonicum Opo-242 and Bradyrhizobium sp. strain Opo-243, were isolated from the same nodule. Symbiotic genes of these isolates were searched throughout the whole-genome sequences. The common nodABC genes and other symbiotic genes required for plant nodulation and nitrogen fixation were present in the isolate Opo-242. Strain Opo-243 did not contain the principal nod, nif, and fix genes; however, five genes (nodP, nodQ, nifL, nolK, and noeL) affecting the specificity of plant-rhizobia interactions but absent in isolate Opo-242 were detected. Strain Opo-243 could not induce nodules but significantly accelerated the root nodule formation after coinoculation with isolate Opo-242. Thus, we demonstrated that taxonomically different strains of the archaic symbiotic system can be co-microsymbionts infecting the same nodule and promoting the nodulation process due to complementary sets of symbiotic genes.


Assuntos
Bradyrhizobium/genética , Mesorhizobium/genética , Oxytropis/microbiologia , Nodulação/genética , Simbiose/genética , Bradyrhizobium/fisiologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Mesorhizobium/fisiologia , Filogenia , Nodulação/fisiologia , Simbiose/fisiologia
12.
Planta ; 248(5): 1101-1120, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30043288

RESUMO

MAIN CONCLUSION: The LysM receptor-like kinase K1 is involved in regulation of pea-rhizobial symbiosis development. The ability of the crop legume Pisum sativum L. to perceive the Nod factor rhizobial signals may depend on several receptors that differ in ligand structure specificity. Identification of pea mutants defective in two types of LysM receptor-like kinases (LysM-RLKs), SYM10 and SYM37, featuring different phenotypic manifestations and impaired at various stages of symbiosis development, corresponds well to this assumption. There is evidence that one of the receptor proteins involved in symbiosis initiation, SYM10, has an inactive kinase domain. This implies the presence of an additional component in the receptor complex, together with SYM10, that remains unknown. Here, we describe a new LysM-RLK, K1, which may serve as an additional component of the receptor complex in pea. To verify the function of K1 in symbiosis, several P. sativum non-nodulating mutants in the k1 gene were identified using the TILLING approach. Phenotyping revealed the blocking of symbiosis development at an appropriately early stage, strongly suggesting the importance of LysM-RLK K1 for symbiosis initiation. Moreover, the analysis of pea mutants with weaker phenotypes provides evidence for the additional role of K1 in infection thread distribution in the cortex and rhizobia penetration. The interaction between K1 and SYM10 was detected using transient leaf expression in Nicotiana benthamiana and in the yeast two-hybrid system. Since the possibility of SYM10/SYM37 complex formation was also shown, we tested whether the SYM37 and K1 receptors are functionally interchangeable using a complementation test. The interaction between K1 and other receptors is discussed.


Assuntos
Pisum sativum/enzimologia , Proteínas de Plantas/fisiologia , Proteínas Quinases/fisiologia , Rhizobium leguminosarum/fisiologia , Simbiose , Western Blotting , Engenharia Genética/métodos , Pisum sativum/microbiologia , Pisum sativum/fisiologia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética , Técnicas do Sistema de Duplo-Híbrido
13.
Int J Syst Evol Microbiol ; 68(5): 1644-1651, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29620492

RESUMO

Gram-negative strains Tri-36, Tri-38, Tri-48T and Tri-53 were isolated from root nodules of the relict legume Oxytropis triphylla (Pall.) Pers. originating from Zunduk Cape (Baikal Lake region, Russia). 16S rRNA gene sequencing showed that the novel isolates were phylogenetically closest to the type strains Phyllobacterium sophorae LMG 27899T, Phyllobacterium brassicacearum LMG 22836T, Phyllobacterium endophyticum LMG 26470T and Phyllobacterium bourgognense LMG 22837T while similarity levels between the isolates and the most closely related strain P. endophyticum LMG 26470T were 98.8-99.5 %. The recA and glnII genes of the isolates showed highest sequence similarities with P. sophorae LMG 27899T (95.4 and 89.5 %, respectively) and P. brassicacearum LMG 22836T (91.4 and 85.1 %, respectively). Comparative analysis of phenotypic properties between the novel isolates and the closest reference strains P. sophorae LMG 27899T, P. brassicacearum LMG 22836T and P. endophyticum LMG 26470T was performed using a microassay system. Average nucleotide identities between the whole genome sequences of the isolates Tri-38 and Tri-48T and P. sophorae LMG 27899T, P. brassicacearum LMG 22836T and P. endophyticum LMG 26470T ranged from 79.23 % for P. endophyticum LMG 26470T to 85.74 % for P. sophorae LMG 27899T. The common nodABC genes required for legume nodulation were absent from strains Tri-38 and Tri-48T, although some other symbiotic nod and fix genes were detected. On the basis of genotypic and phenotypic analysis, a novel species, Phyllobacterium zundukense sp. nov. (type strain Tri-48T=LMG 30371T=RCAM 03910T), is proposed.


Assuntos
Oxytropis/microbiologia , Phyllobacteriaceae/classificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genes Bacterianos , Phyllobacteriaceae/genética , Phyllobacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Simbiose
14.
Int J Mol Sci ; 19(12)2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30563000

RESUMO

Drought is one of the major stress factors affecting the growth and development of plants. In this context, drought-related losses of crop plant productivity impede sustainable agriculture all over the world. In general, plants respond to water deficits by multiple physiological and metabolic adaptations at the molecular, cellular, and organism levels. To understand the underlying mechanisms of drought tolerance, adequate stress models and arrays of reliable stress markers are required. Therefore, in this review we comprehensively address currently available models of drought stress, based on culturing plants in soil, hydroponically, or in agar culture, and critically discuss advantages and limitations of each design. We also address the methodology of drought stress characterization and discuss it in the context of real experimental approaches. Further, we highlight the trends of methodological developments in drought stress research, i.e., complementing conventional tests with quantification of phytohormones and reactive oxygen species (ROS), measuring antioxidant enzyme activities, and comprehensively profiling transcriptome, proteome, and metabolome.


Assuntos
Adaptação Fisiológica , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Plantas , Proteoma , Estresse Fisiológico , Transcriptoma , Desidratação/genética , Desidratação/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo
15.
Int J Syst Evol Microbiol ; 67(1): 94-100, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27902217

RESUMO

Gram-stain-negative strains V5/3MT, V5/5K, V5/5M and V5/13 were isolated from root nodules of Vicia alpestris plants growing in the North Ossetia region (Caucasus). Sequencing of the partial 16S rRNA gene (rrs) and four housekeeping genes (dnaK, gyrB, recA and rpoB) showed that the isolates from V. alpestris were most closely related to the species Microvirga zambiensis (order Rhizobiales, family Methylobacteriaceae) which was described for the single isolate from root nodule of Listia angolensis growing in Zambia. Sequence similarities between the Microvirga-related isolates and M. zambiensis WSM3693T ranged from 98.5 to 98.7 % for rrs and from 79.7 to 95.8 % for housekeeping genes. Cellular fatty acids of the isolates V5/3MT, V5/5K, V5/5M and V5/13 included important amounts of C18 : 1ω7c (54.0-67.2 %), C16 : 0 (6.0-7.8 %), C19 : 0 cyclo ω8c (3.1-10.2 %), summed feature 2 (comprising one or more of iso-C16 : 1 I, C14 : 0 3-OH and unknown ECL 10.938, 5.8-22.5 %) and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 02-OH, 2.9-4.0 %). DNA-DNA hybridization between the isolate V5/3MT and M. zambiensis WSM3693T revealed DNA-DNA relatedness of 35.3 %. Analysis of morphological and physiological features of the novel isolates demonstrated their unique phenotypic profile in comparison with reference strains from closely related species of the genus Microvirga. On the basis of genotypic and phenotypic analysis, a novel species named Microvirga ossetica sp. nov. is proposed. The type strain is V5/3MT (=LMG 29787T=RCAM 02728T). Three additional strains of the species are V5/5K, V5/5M and V5/13.


Assuntos
Methylobacteriaceae/classificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Vicia/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Methylobacteriaceae/genética , Methylobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA
16.
Int J Mol Sci ; 19(1)2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29267197

RESUMO

Plants are able to discriminate and respond to structurally related chitooligosaccharide (CO) signals from pathogenic and symbiotic fungi. In model plants Arabidopsis thaliana and Oryza sativa LysM-receptor like kinases (LysM-RLK) AtCERK1 and OsCERK1 (chitin elicitor receptor kinase 1) were shown to be involved in response to CO signals. Based on phylogenetic analysis, the pea Pisum sativum L. LysM-RLK PsLYK9 was chosen as a possible candidate given its role on the CERK1-like receptor. The knockdown regulation of the PsLyk9 gene by RNA interference led to increased susceptibility to fungal pathogen Fusarium culmorum. Transcript levels of PsPAL2, PsPR10 defense-response genes were significantly reduced in PsLyk9 RNAi roots. PsLYK9's involvement in recognizing short-chain COs as most numerous signals of arbuscular mycorrhizal (AM) fungi, was also evaluated. In transgenic roots with PsLyk9 knockdown treated with short-chain CO5, downregulation of AM symbiosis marker genes (PsDELLA3, PsNSP2, PsDWARF27) was observed. These results clearly indicate that PsLYK9 appears to be involved in the perception of COs and subsequent signal transduction in pea roots. It allows us to conclude that PsLYK9 is the most likely CERK1-like receptor in pea to be involved in the control of plant immunity and AM symbiosis formation.


Assuntos
Quitina/análogos & derivados , Micorrizas/fisiologia , Pisum sativum/imunologia , Pisum sativum/microbiologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Simbiose , Quitina/metabolismo , Quitosana , Fusarium/patogenicidade , Expressão Gênica , Técnicas de Inativação de Genes , Oligossacarídeos , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/genética
17.
Physiol Mol Biol Plants ; 23(4): 851-863, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29158634

RESUMO

Our study aimed to evaluate intraspecific variability of pea (Pisum sativum L.) in Al tolerance and to reveal mechanisms underlying genotypic differences in this trait. At the first stage, 106 pea genotypes were screened for Al tolerance using root re-elongation assay based on staining with eriochrome cyanine R. The root re-elongation zone varied from 0.5 mm to 14 mm and relationships between Al tolerance and provenance or phenotypic traits of genotypes were found. Tolerance index (TI), calculated as a biomass ratio of Al-treated and non-treated contrasting genotypes grown in hydroponics for 10 days, varied from 30% to 92% for roots and from 38% to 90% for shoots. TI did not correlate with root or shoot Al content, but correlated positively with increasing pH and negatively with residual Al concentration in nutrient solution in the end of experiments. Root exudation of organic acid anions (mostly acetate, citrate, lactate, pyroglutamate, pyruvate and succinate) significantly increased in several Al-treated genotypes, but did not correlate with TI. Al-treatment decreased Ca, Co, Cu, K, Mg, Mn, Mo, Ni, S and Zn contents in roots and/or shoots, whereas contents of several elements (P, B, Fe and Mo in roots and B and Fe in shoots) increased, suggesting that Al toxicity induced substantial disturbances in uptake and translocation of nutrients. Nutritional disturbances were more pronounced in Al sensitive genotypes. In conclusion, pea has a high intraspecific variability in Al tolerance and this trait is associated with provenance and phenotypic properties of plants. Transformation of Al to unavailable (insoluble) forms in the root zone and the ability to maintain nutrient uptake are considered to be important mechanisms of Al tolerance in this plant species.

18.
New Phytol ; 210(1): 168-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26682876

RESUMO

In this study we analyzed and compared the organization of the tubulin cytoskeleton in nodules of Medicago truncatula and Pisum sativum. We combined antibody labeling and green fluorescent protein tagging with laser confocal microscopy to observe microtubules (MTs) in nodules of both wild-type (WT) plants and symbiotic plant mutants blocked at different steps of nodule development. The 3D MT organization of each histological nodule zone in both M. truncatula and P. sativum is correlated to specific developmental processes. Endoplasmic MTs appear to support infection thread growth, infection droplet formation and bacterial release into the host cytoplasm in nodules of both species. No differences in the organization of the MT cytoskeleton between WT and bacterial release mutants were apparent, suggesting both that the phenotype is not linked to a defect in MT organization and that the growth of hypertrophied infection threads is supported by MTs. Strikingly, bacterial release coincides with a change in the organization of cortical MTs from parallel arrays into an irregular, crisscross arrangement. After release, the organization of endoplasmic MTs is linked to the distribution of symbiosomes. The 3D MT organization of each nodule histological zone in M. truncatula and P. sativum was analyzed and linked to specific developmental processes.


Assuntos
Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Microtúbulos/metabolismo , Pisum sativum/metabolismo , Pisum sativum/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium/fisiologia , Tubulina (Proteína)/metabolismo , Retículo Endoplasmático/metabolismo , Meristema/metabolismo , Modelos Biológicos , Fixação de Nitrogênio , Polimerização , Nódulos Radiculares de Plantas/metabolismo
19.
J Exp Bot ; 66(8): 2359-69, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25694548

RESUMO

Heavy metals have multiple effects on plant growth and physiology, including perturbation of plant water status. These effects were assessed by exposing the unique Cd-tolerant and Cd-accumulating pea (Pisum sativum L.) mutant SGECd(t) and its wild-type (WT) line SGE to either cadmium (1, 4 µM CdCl2) or mercury (0.5, 1, 2 µM HgCl2) in hydroponic culture for 12 days. When exposed to Cd, SGECd(t) accumulated more Cd in roots, xylem sap, and shoot, and had considerably more biomass than WT plants. WT plants lost circa 0.2 MPa turgor when grown in 4 µM CdCl2, despite massive decreases in whole-plant transpiration rate and stomatal conductance. In contrast, root Hg accumulation was similar in both genotypes, but WT plants accumulated more Hg in leaves and had a higher stomatal conductance, and root and shoot biomass compared with SGECd(t). Shoot excision resulted in greater root-pressure induced xylem exudation of SGECd(t) in the absence of Cd or Hg and following Cd exposure, whereas the opposite response or no genotypic differences occurred following Hg exposure. Exposing plants that had not been treated with metal to 50 µM CdCl2 for 1h increased root xylem exudation of WT, whereas 50 µM HgCl2 inhibited and eliminated genotypic differences in root xylem exudation, suggesting differences between WT and SGECd(t) plants in aquaporin function. Thus, root water transport might be involved in mechanisms of increased tolerance and accumulation of Cd in the SGECd(t) mutant. However, the lack of cross-tolerance to Cd and Hg stress in the mutant indicates metal-specific mechanisms related to plant adaptation.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Cádmio/toxicidade , Mercúrio/toxicidade , Mutação/genética , Pisum sativum/fisiologia , Água/metabolismo , Biomassa , Genótipo , Pisum sativum/efeitos dos fármacos , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Fatores de Tempo , Xilema/efeitos dos fármacos , Xilema/metabolismo
20.
Plant Cell ; 24(11): 4498-510, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23136374

RESUMO

During their symbiotic interaction with rhizobia, legume plants develop symbiosis-specific organs on their roots, called nodules, that house nitrogen-fixing bacteria. The molecular mechanisms governing the identity and maintenance of these organs are unknown. Using Medicago truncatula nodule root (noot) mutants and pea (Pisum sativum) cochleata (coch) mutants, which are characterized by the abnormal development of roots from the nodule, we identified the NOOT and COCH genes as being necessary for the robust maintenance of nodule identity throughout the nodule developmental program. NOOT and COCH are Arabidopsis thaliana BLADE-ON-PETIOLE orthologs, and we have shown that their functions in leaf and flower development are conserved in M. truncatula and pea. The identification of these two genes defines a clade in the BTB/POZ-ankyrin domain proteins that shares conserved functions in eudicot organ development and suggests that NOOT and COCH were recruited to repress root identity in the legume symbiotic organ.


Assuntos
Medicago truncatula/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Sinorhizobium meliloti/fisiologia , Arabidopsis/genética , Sequência de Bases , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/microbiologia , Regulação da Expressão Gênica de Plantas , Medicago truncatula/citologia , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Dados de Sequência Molecular , Mutação , Fixação de Nitrogênio , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/microbiologia , Fenótipo , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA