Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Electrophoresis ; 38(11): 1450-1457, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27747893

RESUMO

We report a facile and noninvasive way to disintegrate a microdroplet into a string of further miniaturized ones under the influence of an external electrohydrodynamic field inside a microchannel. The deformation and breakup of the droplet was engendered by the Maxwell's stress originating from the accumulation of induced and free charges at the oil-water interface. While at smaller field intensities, for example less than 1 MV/m, the droplet deformed into a plug, at relatively higher field intensities, e.g. ∼1.16 MV/m, a pair of droplets having opposite surface charge was formed. The charged droplets showed an interesting periodic bridging and breakup during their translation motion across the channel. For even higher field intensities, for example more than 1.2 MV/m, the entire droplet underwent dielectrophoresis toward one of the electrodes before experiencing a strong attractive force from the other electrode to deform into a shape of a Taylor cone. With progress in time, mimicking the electrospraying phenomenon, the cone tip periodically ejected a string of miniaturized water droplets to form a microemulsion inside the channel. The frequency and size of the droplet ejection could be tuned by varying the applied field intensity. A water droplet of ∼214 µm diameter could continuously eject droplets of size ∼10 µm or even smaller to form a microemulsion inside the channel.


Assuntos
Eletroforese em Microchip , Dispositivos Lab-On-A-Chip , Tamanho da Partícula , Simulação por Computador , Eletricidade , Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Desenho de Equipamento , Microfluídica , Miniaturização , Modelos Teóricos , Silício
2.
Electrophoresis ; 38(2): 278-286, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27436402

RESUMO

Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non-invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil-water flow inside microchannels. The Maxwell's stress generated from the electric field at the oil-water interface could deform, stretch, neck, pin, and disintegrate a droplet into many miniaturized daughter droplets, which eventually ushered a one-step method to form water-in-oil microemulsion employing microchannels. The interplay between electrostatic, inertial, capillary, and viscous forces led to various pathways of droplet breaking, namely, fission, cascade, or Rayleigh modes. While a localized electric field in the fission mode could split a droplet into a number of daughter droplets of smaller size, the cascade or the Rayleigh mode led to the formation of an array of miniaturized droplets when multiple electrodes generating different field intensities were ingeniously assembled around the microchannel. The droplets size and frequency could be tuned by varying the field intensity, channel diameter, electrode locations, interfacial tension, and flow ratio. The proposed methodology shows a simple methodology to transform a microdroplet into an array of miniaturized ones inside a straight microchannel for enhanced mass, energy, and momentum transfer, and higher throughput.


Assuntos
Técnicas Analíticas Microfluídicas , Modelos Teóricos , Simulação por Computador , Eletricidade , Óleos de Silicone/química , Água/química
3.
J Colloid Interface Sci ; 578: 738-748, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32570143

RESUMO

HYPOTHESIS: Mixing of a chemical trigger of lower surface tension into a microdroplet with relatively higher surface tension can cause a rapid spreading of the droplet on a liquid-sublayer to form a host of metastable liquid morphologies such as sheets, toroids, threads, or droplets. Subsequently, such metastable fluidic objects break into a collection of droplets to form microemulsions. EXPERIMENTS: Introduction of surfactant loaded water or long-chain alcohols into an oleic acid microdroplet stimulate a rapid spreading of the same on a water sublayer, which helps in the formation of a metastable liquid sheet connected to a liquid toroid. Much like slipping films, the liquid sheet dewets the water underlayer through the formation of holes before they grow and coalesce to form liquid ribbons. While such liquid structures eventually break into an array of microdroplets, the liquid toroid expands before undergoing a Plateau-Rayleigh instability to form microdroplets. FINDINGS: A single step self-organization process in which a chemical trigger can convert a microdroplet into a liquid-toroid on a water surface, in absence of any rotational influence. A symmetric to asymmetric transition in toroid morphology is observed due to the changeover of laminar to turbulent flow regimes with the reduction in viscosity of fluid-sublayer or variation in chemical triggers. The toroid cross-section and droplet spacing after the toroid breakup follow a length scale evaluated from a linear stability analysis.

4.
Nanoscale Adv ; 1(3): 1155-1164, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133198

RESUMO

A droplet energy harvester (DEH) composed of aqueous salt solution could generate electrical energy from light when placed on a metal-semiconductor Schottky-junction emulating the principles of electrochemical photovoltaics (ECPV). The maximum potential difference generated was ∼95 mV under sun, which was enhanced by ∼1.5 times after the addition of gold nanoparticles (AuNPs) in the droplet because of the generation of additional charge carriers from the localized surface plasmon resonance (LSPR). Focusing the solar illumination through a bi-convex lens on five such droplets increased the voltage to ∼320 mV with a power density of ∼0.25 mW cm-2. When the DEH was converted to a microfluidic energy harvester (MEH) by flowing the AuNP laden salt solution through a microchannel integrated with an array of Schottky-junction electrodes, at an optimal flow rate, another two-fold increase in the power density was observed. In the MEH, because the ECPV aided by the LSPR converted the solar energy into electrical energy, the streaming potential (SP) generated across the electrodes because of the fluid flow converted the mechanical energy into electrical energy. Increase in the number of electrode pairs improved the voltage generation, which suggested that the MEH had potential for microscale-very-large-scale-integration (µ-VLSI). The combined effects of ECPV, LSPR, and SP in the MEH could show an efficiency ∼2.5%, which was one of the highest ones reported, for Schottky-junction energy harvesters. This study shows some simple and efficient pathways to harvest high-density electrical power using microchannels and droplets from the naturally abundant solar or hydroelectric (hydel) energy resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA