Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2401273, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958069

RESUMO

Acid-treated multi-walled carbon nanotube (MWCNT) covalently functionalized with cobalt triphenothiazine porphyrin (CoTriPTZ-OH) A3B type porphyrin, containing three phenothiazine moieties (represented as MWCNT-CoTriPTZ) is synthesized and characterized by various spectroscopic and microscopic techniques. The nanoconjugate, MWCNT-CoTriPTZ, exhibits a pair of distinct redox peaks due to the Co2+/Co3+ redox process in 0.1 M pH 7.0 phosphate buffer. Further, it electrocatalytically oxidizes hydrazine at a low overpotential with a high current. This property is advantageously utilized for the sensitive determination of hydrazine. The developed electrochemical sensor exhibits high sensitivity (0.99 µAµM-1cm-2), a low limit of detection (4.5 ppb), and a broad linear calibration range (0.1 µM to 3.0 mM) for the determination of hydrazine. Further, MWCNT-CoTriPTZ is exploited for hydrazine-assisted green hydrogen synthesis. The high efficiency of hydrazine oxidation is confirmed by the low onset potential (0.45 V (vs RHE)) and 0.60 V (vs RHE) at the current density of 10 mA.cm-2. MWCNT-CoTriPTZ displays a high current density (77.29 mA.cm-2) at 1.45 V (vs RHE).

2.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38894441

RESUMO

The use of low-cost environmental sensors has gained significant attention due to their affordability and potential to intensify environmental monitoring networks. These sensors enable real-time monitoring of various environmental parameters, which can help identify pollution hotspots and inform targeted mitigation strategies. Low-cost sensors also facilitate citizen science projects, providing more localized and granular data, and making environmental monitoring more accessible to communities. However, the accuracy and reliability of data generated by these sensors can be a concern, particularly without proper calibration. Calibration is challenging for low-cost sensors due to the variability in sensing materials, transducer designs, and environmental conditions. Therefore, standardized calibration protocols are necessary to ensure the accuracy and reliability of low-cost sensor data. This review article addresses four critical questions related to the calibration and accuracy of low-cost sensors. Firstly, it discusses why low-cost sensors are increasingly being used as an alternative to high-cost sensors. In addition, it discusses self-calibration techniques and how they outperform traditional techniques. Secondly, the review highlights the importance of selectivity and sensitivity of low-cost sensors in generating accurate data. Thirdly, it examines the impact of calibration functions on improved accuracies. Lastly, the review discusses various approaches that can be adopted to improve the accuracy of low-cost sensors, such as incorporating advanced data analysis techniques and enhancing the sensing material and transducer design. The use of reference-grade sensors for calibration and validation can also help improve the accuracy and reliability of low-cost sensor data. In conclusion, low-cost environmental sensors have the potential to revolutionize environmental monitoring, particularly in areas where traditional monitoring methods are not feasible. However, the accuracy and reliability of data generated by these sensors are critical for their successful implementation. Therefore, standardized calibration protocols and innovative approaches to enhance the sensing material and transducer design are necessary to ensure the accuracy and reliability of low-cost sensor data.

3.
Biomacromolecules ; 10(1): 184-9, 2009 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-19072040

RESUMO

Turbidimetric titration was used to initiate associative intermolecular interactions between a pair of protein molecules, gelatin-A and gelatin-B, having complementary charges that led to pH-induced liquid-liquid phase separation and the formation of complex coacervate. The stoichiometric binding ratio was found to be [gelatin-A]/[gelatin-B]=3:2. The size of soluble intermolecular aggregates present in the supernatant exhibited interesting time-dependent coacervation because of residual electrostatic interactions. Dynamic light scattering and turbidity studies provided a systematic account of coacervation behavior. Rheology studies attributed the softening of the coacervate matrix to the presence of encapsulated salbutamol sulfate. The in vitro drug release kinetics was probed in simulated gastric fluid medium at physiological temperature (37 degrees C), which showed biphasic behavior. The initial release kinetics exhibited an exponential growth to saturation behavior, followed by a slower logarithmic release process.


Assuntos
Albuterol/química , Gelatina/química , Concentração de Íons de Hidrogênio , Cinética , Nefelometria e Turbidimetria , Tamanho da Partícula , Ligação Proteica , Propriedades de Superfície , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA