Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Basic Microbiol ; 64(8): e2400081, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39031701

RESUMO

RNA interference (RNAi) has not been tested in the pandemic amphibian pathogen, Batrachochytrium dendrobatidis, but developing this technology could be useful to elucidate virulence mechanisms, identify therapeutic targets, and may present a novel antifungal treatment option for chytridiomycosis. To manipulate and decipher gene function, rationally designed small interfering RNA (siRNA) can initiate the destruction of homologous messenger RNA (mRNA), resulting in the "knockdown" of target gene expression. Here, we investigate whether siRNA can be used to manipulate gene expression in B. dendrobatidis via RNAi using differing siRNA strategies to target genes involved in glutathione and ornithine synthesis. To determine the extent and duration of mRNA knockdown, target mRNA levels were monitored for 24-48 h after delivery of siRNA targeting glutamate-cysteine ligase, with a maximum of ~56% reduction in target transcripts occurring at 36 h. A second siRNA design targeting glutamate-cysteine ligase also resulted in ~53% knockdown at this time point. siRNA directed toward a different gene target, ornithine decarboxylase, achieved 17% reduction in target transcripts. Although no phenotypic effects were observed, these results suggest that RNAi is possible in B. dendrobatidis, and that gene expression can be manipulated in this pathogen. We outline ideas for further optimization steps to increase knockdown efficiency to better harness RNAi techniques for control of B. dendrobatidis.


Assuntos
Quitridiomicetos , Técnicas de Silenciamento de Genes , Glutamato-Cisteína Ligase , Interferência de RNA , RNA Mensageiro , RNA Interferente Pequeno , RNA Interferente Pequeno/genética , RNA Mensageiro/genética , Animais , Quitridiomicetos/genética , Quitridiomicetos/patogenicidade , Glutamato-Cisteína Ligase/genética , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Anfíbios/microbiologia , Glutationa/metabolismo
2.
Anim Biotechnol ; 34(4): 775-784, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32707002

RESUMO

Development of simple and readily adoptable methods to mediate germline engineering of the chicken genome will have many applications in research, agriculture and industrial biotechnology. We report germline targeting of the endogenous chicken Interferon Alpha and Beta Receptor Subunit 1 (IFNAR1) gene by in vivo transgenic expression of the high-fidelity Cas9 (Cas9-HF1) and guide RNAs (gRNAs) in chickens. First, we developed a Tol2 transposon vector carrying Cas9-HF1, IFNAR1-gRNAs (IF-gRNAs) and green fluorescent protein (GFP) transgenes (pTgRCG) and validated in chicken fibroblast DF1 cells. Next, the pTgRCG plasmid was directly injected into the dorsal aorta of embryonic day (ED) 2.5 chicken embryos targeting the circulating primordial germ cells (PGCs). The resulting chimera roosters generated a fully transgenic generation 1 (G1) hen with constitutive expression of Cas9-HF1 and IF-gRNAs (G1_Tol2-Cas9/IF-gRNA). We detected a spectrum of indels at gRNA-targeted loci in the G1_Tol2-Cas9/IF-gRNA hen and the indels were stably inherited by the G2 progeny. Breeding of the G1_Tol2-Cas9/IF-gRNA hen resulted in up to 10% transgene-free heterozygote IFNAR1 mutants, following null-segregation of the Tol2 insert. The method described here will provide new opportunities for genome editing in chicken and other avian species that lack PGC culture.


Assuntos
Sistemas CRISPR-Cas , Galinhas , Animais , Embrião de Galinha , Feminino , Masculino , Galinhas/genética , Sistemas CRISPR-Cas/genética , Transfecção , Animais Geneticamente Modificados/genética , Edição de Genes/métodos , Células Germinativas/metabolismo
3.
Transgenic Res ; 31(2): 167-199, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35000100

RESUMO

Traditional breeding techniques, applied incrementally over thousands of years, have yielded huge benefits in the characteristics of agricultural animals. This is a result of significant, measurable changes to the genomes of those animal species and breeds. Genome editing techniques may now be applied to achieve targeted DNA sequence alterations, with the potential to affect traits of interest to production of agricultural animals in just one generation. New opportunities arise to improve characteristics difficult to achieve or not amenable to traditional breeding, including disease resistance, and traits that can improve animal welfare, reduce environmental impact, or mitigate impacts of climate change. Countries and supranational institutions are in the process of defining regulatory approaches for genome edited animals and can benefit from sharing approaches and experiences to institute progressive policies in which regulatory oversight is scaled to the particular level of risk involved. To facilitate information sharing and discussion on animal biotechnology, an international community of researchers, developers, breeders, regulators, and communicators recently held a series of seven virtual workshop sessions on applications of biotechnology for animal agriculture, food and environmental safety assessment, regulatory approaches, and market and consumer acceptance. In this report, we summarize the topics presented in the workshop sessions, as well as discussions coming out of the breakout sessions. This is framed within the context of past and recent scientific and regulatory developments. This is a pivotal moment for determination of regulatory approaches and establishment of trust across the innovation through-chain, from researchers, developers, regulators, breeders, farmers through to consumers.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Agricultura/métodos , Animais , Biotecnologia , Produtos Agrícolas/genética , Edição de Genes/métodos
4.
Anim Biotechnol ; 33(6): 1235-1245, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33650465

RESUMO

Efficient isolation of genetically modified cells that are phenotypically indistinguishable from the unmodified cells remains a major technical barrier for the broader utilization of CRISPR/Cas9. Here, we report a novel enrichment approach to select the genome engineered cells by co-targeting a genomically integrated GFP gene along with the endogenous gene of interest (GOI). Using this co-targeting approach, multiple genomic loci were successfully targeted in chicken (DF1) and quail (CEC-32) fibroblast cell lines by transient transfection of Cas9 and guide RNAs (gRNAs). Clonal isolation of co-targeted DF1 cells showed 75% of cell clones had deletion of GFP and biallelic deletion of the GOI. To assess the utility of this approach to generate genome modified animals, we tested it on chicken primordial germ cells (PGCs) expressing GFP by co-targeting with gRNAs against GFP and endogenous ovomucoid (OVM) gene. PGCs enriched for loss of GFP and confirmed for OVM deletion, derived by co-targeting, were injected into Hamburger and Hamilton stage 14-15 chicken embryos, and their ability to migrate to the genital ridge was confirmed. This simple, efficient enrichment approach could easily be applied to the creation of knock-out or edited cell lines or animals.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Embrião de Galinha , Animais , Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/genética , Células Germinativas/metabolismo , Galinhas/genética , Linhagem Celular
5.
Transgenic Res ; 28(Suppl 2): 87-92, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31321689

RESUMO

The chicken is an exemplar of efficient intensive animal agriculture and provides two valuable food products, chicken meat and eggs. Only aquaculture is better, by efficiency, but poultry is still top, by mass of animal protein produced as food in the global context. However this efficiency and intensive production comes with a number of challenges. Though the genetics of selective breeding have led to dramatic improvements in yield, efficiency and product quality, traits that relate to disease and welfare outcomes have not been so tractable. These two issues are major impacts to the industry in terms of production and in terms of public perception. Both transgenic technology and genome editing have clear potential for impact in these two important areas. The reproductive biology of birds requires techniques very specific to birds to achieve heritable (germline) edited traits. These are quite involved and, even though they are now well-defined and reliable, there is room for improvement and advances can be expected in the future. Currently the key targets for this technology are modifying chicken genes involved in virus-receptor interactions and cellular response involved in infection. For the egg industry the technology is being applied to the issue of sex-selection for layer hens (and the removal of males), removal of allergens from egg white and the tailoring of eggs system to enhance the yield of influenza vaccine doses. Regulation and trading of the animals generated, and resulting food products, will significantly impact the value and future development of genome editing for poultry.


Assuntos
Hipersensibilidade a Ovo/genética , Edição de Genes/métodos , Engenharia Genética , Aves Domésticas/genética , Agricultura , Animais , Cruzamento , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Humanos , Aves Domésticas/crescimento & desenvolvimento , Seleção Artificial
6.
Transgenic Res ; 28(1): 51-76, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30374651

RESUMO

Zoonotic and foodborne diseases pose a significant burden, decreasing both human and animal health. Modifying chickens to overexpress antimicrobials has the potential to decrease bacterial growth on poultry products and boost chicken innate immunity. Chickens overexpressing either ovotransferrin or avian ß-defensin-3 (AvßD3) were generated using Tol-2 transposons. Transgene expression at the RNA and protein level was seen in egg white, breast muscle, and serum. There were significant differences in the immune cell populations in the blood, bursa, and spleen associated with transgene expression including an increased proportion of CD8+ cells in the blood of ovotransferrin and AvßD3 transgenic birds. Expression of the antimicrobials inhibited the in vitro growth of human and chicken bacterial pathogens and spoilage bacteria. For example, transgene expression significantly reduced growth of aerobic and coliform bacteria in breast muscle and decreased the growth of Salmonella enterica in egg white. Overall these results indicate that overexpression of antimicrobials in the chicken can impact the immune system and increase the antimicrobial capacity of poultry products.


Assuntos
Animais Geneticamente Modificados/genética , Conalbumina/genética , Imunidade Inata/genética , beta-Defensinas/genética , Animais , Animais Geneticamente Modificados/microbiologia , Anti-Infecciosos/sangue , Galinhas/sangue , Galinhas/genética , Conalbumina/sangue , Conalbumina/imunologia , Elementos de DNA Transponíveis/genética , Clara de Ovo/química , Regulação da Expressão Gênica/genética , Humanos , Músculos/metabolismo , Produtos Avícolas/microbiologia , beta-Defensinas/sangue , beta-Defensinas/imunologia
7.
Transgenic Res ; 26(3): 331-347, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27896535

RESUMO

Generating transgenic and gene edited mammals involves in vitro manipulation of oocytes or single cell embryos. Due to the comparative inaccessibility of avian oocytes and single cell embryos, novel protocols have been developed to produce transgenic and gene edited birds. While these protocols are relatively efficient, they involve two generation intervals before reaching complete somatic and germline expressing transgenic or gene edited birds. Most of this work has been done with chickens, and many protocols require in vitro culturing of primordial germ cells (PGCs). However, for many other bird species no methodology for long term culture of PGCs exists. Developing methodologies to produce germline transgenic or gene edited birds in the first generation would save significant amounts of time and resource. Furthermore, developing protocols that can be readily adapted to a wide variety of avian species would open up new research opportunities. Here we report a method using sperm as a delivery mechanism for gene editing vectors which we call sperm transfection assisted gene editing (STAGE). We have successfully used this method to generate GFP knockout embryos and chickens, as well as generate embryos with mutations in the doublesex and mab-3 related transcription factor 1 (DMRT1) gene using the CRISPR/Cas9 system. The efficiency of the method varies from as low as 0% to as high as 26% with multiple factors such as CRISPR guide efficiency and mRNA stability likely impacting the outcome. This straightforward methodology could simplify gene editing in many bird species including those for which no methodology currently exists.


Assuntos
Animais Geneticamente Modificados , Edição de Genes/métodos , Espermatozoides/fisiologia , Transfecção/métodos , Animais , Embrião de Galinha , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Feminino , Proteínas de Fluorescência Verde/genética , Inseminação Artificial , Masculino , RNA Guia de Cinetoplastídeos , Fatores de Transcrição/genética
8.
Transgenic Res ; 25(3): 307-19, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26820412

RESUMO

This review provides an historic perspective of the key steps from those reported at the 1st Transgenic Animal Research Conference in 1997 through to the very latest developments in avian transgenesis. Eighteen years later, on the occasion of the 10th conference in this series, we have seen breakthrough advances in the use of viral vectors and transposons to transform the germline via the direct manipulation of the chicken embryo, through to the establishment of PGC cultures allowing in vitro modification, expansion into populations to analyse the genetic modifications and then injection of these cells into embryos to create germline chimeras. We have now reached an unprecedented time in the history of chicken transgenic research where we have the technology to introduce precise, targeted modifications into the chicken genome, ranging from; new transgenes that provide improved phenotypes such as increased resilience to economically important diseases; the targeted disruption of immunoglobulin genes and replacement with human sequences to generate transgenic chickens that express "humanised" antibodies for biopharming; and the deletion of specific nucleotides to generate targeted gene knockout chickens for functional genomics. The impact of these advances is set to be realised through applications in chickens, and other bird species as models in scientific research, for novel biotechnology and to protect and improve agricultural productivity.


Assuntos
Animais Geneticamente Modificados/genética , Biotecnologia/tendências , Galinhas/genética , Engenharia Genética/tendências , Animais , Galinhas/crescimento & desenvolvimento , Genoma , Células Germinativas , Humanos
9.
Transgenic Res ; 25(5): 575-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27246007

RESUMO

The ability to generate transgenic animals has existed for over 30 years, and from those early days many predicted that the technology would have beneficial applications in agriculture. Numerous transgenic agricultural animals now exist, however to date only one product from a transgenic animal has been approved for the food chain, due in part to cumbersome regulations. Recently, new techniques such as precision breeding have emerged, which enables the introduction of desired traits without the use of transgenes. The rapidly growing human population, environmental degradation, and concerns related to zoonotic and pandemic diseases have increased pressure on the animal agriculture sector to provide a safe, secure and sustainable food supply. There is a clear need to adopt transgenic technologies as well as new methods such as gene editing and precision breeding to meet these challenges and the rising demand for animal products. To achieve this goal, cooperation, education, and communication between multiple stakeholders-including scientists, industry, farmers, governments, trade organizations, NGOs and the public-is necessary. This report is the culmination of concepts first discussed at an OECD sponsored conference and aims to identify the main barriers to the adoption of animal biotechnology, tactics for navigating those barriers, strategies to improve public perception and trust, as well as industry engagement, and actions for governments and trade organizations including the OECD to harmonize regulations and trade agreements. Specifically, the report focuses on animal biotechnologies that are intended to improve breeding and genetics and currently are not routinely used in commercial animal agriculture. We put forward recommendations on how scientists, regulators, and trade organizations can work together to ensure that the potential benefits of animal biotechnology can be realized to meet the future needs of agriculture to feed the world.


Assuntos
Animais Geneticamente Modificados/genética , Biotecnologia/tendências , Produtos Agrícolas/genética , Inocuidade dos Alimentos , Animais , Cruzamento , Produtos Agrícolas/crescimento & desenvolvimento , Abastecimento de Alimentos , Humanos
10.
Biomacromolecules ; 17(11): 3532-3546, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27709897

RESUMO

The translation of siRNA into clinical therapies has been significantly delayed by issues surrounding the delivery of naked siRNA to target cells. Here we investigate siRNA delivery by cationic acrylic polymers developed by Reversible Addition-Fragmentation chain Transfer (RAFT) mediated free radical polymerization. We investigated cell uptake and gene silencing of a series of siRNA-star polymer complexes both in the presence and absence of a protein "corona". Using a multidisciplinary approach including quantitative nanoscale mechanical-atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis we have characterized the nanoscale morphology, stiffness, and surface charge of the complexes with and without the protein corona. This is one of the first examples of a comprehensive physiochemical analysis of siRNA-polymer complexes being performed alongside in vitro biological assays, allowing us to describe a set of desirable physical features of cationic polymer complexes that promote gene silencing. Multifaceted studies such as this will improve our understanding of structure-function relationships in nanotherapeutics, facilitating the rational design of polymer-mediated siRNA delivery systems for novel treatment strategies.


Assuntos
Inativação Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Nanopartículas/química , RNA Interferente Pequeno/química , Cátions/administração & dosagem , Cátions/química , Linhagem Celular , Humanos , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética
11.
BMC Genomics ; 15: 682, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128405

RESUMO

BACKGROUND: Bats are a major source of new and emerging viral diseases. Despite the fact that bats carry and shed highly pathogenic viruses including Ebola, Nipah and SARS, they rarely display clinical symptoms of infection. Host factors influencing viral replication are poorly understood in bats and are likely to include both pre- and post-transcriptional regulatory mechanisms. MicroRNAs are a major mechanism of post-transcriptional gene regulation, however very little is known about them in bats. RESULTS: This study describes 399 microRNAs identified by deep sequencing of small RNA isolated from tissues of the Black flying fox, Pteropus alecto, a confirmed natural reservoir of the human pathogens Hendra virus and Australian bat lyssavirus. Of the microRNAs identified, more than 100 are unique amongst vertebrates, including a subset containing mutations in critical seed regions. Clusters of rapidly-evolving microRNAs were identified, as well as microRNAs predicted to target genes involved in antiviral immunity, the DNA damage response, apoptosis and autophagy. Closer inspection of the predicted targets for several highly supported novel miRNA candidates suggests putative roles in host-virus interaction. CONCLUSIONS: MicroRNAs are likely to play major roles in regulating virus-host interaction in bats, via dampening of inflammatory responses (limiting the effects of immunopathology), and directly limiting the extent of viral replication, either through restricting the availability of essential factors or by controlling apoptosis. Characterisation of the bat microRNA repertoire is an essential step towards understanding transcriptional regulation during viral infection, and will assist in the identification of mechanisms that enable bats to act as natural virus reservoirs. This in turn will facilitate the development of antiviral strategies for use in humans and other species.


Assuntos
Quirópteros/genética , MicroRNAs/genética , Animais , Sequência de Bases , Sítios de Ligação , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Íntrons , Sequências Repetidas Invertidas , Masculino , Anotação de Sequência Molecular , Dados de Sequência Molecular , Família Multigênica , Interferência de RNA , Análise de Sequência de RNA , Homologia de Sequência do Ácido Nucleico
12.
J Gen Virol ; 95(Pt 9): 1880-1885, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24876306

RESUMO

Difficulties associated with efficient delivery and targeting of miRNAs to cells is hampering the real world application of miRNA technology. This study utilized an influenza A-based delivery system to express miR-155 in order to knockdown SOCS1 mRNA. Using qPCR and dual luciferase technology we show that miR-155 delivery resulted in a significant increase in cellular miR-155 which facilitated a downregulation of SOCS1 gene expression and a functional increase in IL-6 and IFN-ß cytokines.


Assuntos
Técnicas de Transferência de Genes , Vírus da Influenza A/genética , MicroRNAs/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Cães , Técnicas de Silenciamento de Genes , Vetores Genéticos , Interferon beta/biossíntese , Interleucina-6/biossíntese , Células Madin Darby de Rim Canino , Camundongos , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/biossíntese , Células Vero
13.
Biol Reprod ; 90(5): 106, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24621923

RESUMO

Anti-Müllerian hormone (AMH) signaling is required for proper development of the urogenital system in vertebrates. In male mammals, AMH is responsible for regressing the Müllerian ducts, which otherwise develop into the fallopian tubes, oviducts, and upper vagina of the female reproductive tract. This role is highly conserved across higher vertebrates. However, AMH is required for testis development in fish species that lack Müllerian ducts, implying that AMH signaling has broader roles in other vertebrates. AMH signals through two serine/threonine kinase receptors. The primary AMH receptor, AMH receptor type-II (AMHR2), recruits the type I receptor, which transduces the signal intracellularly. To enhance our understanding of AMH signaling and the potential role of AMH in gonadal sex differentiation, we cloned chicken AMHR2 cDNA and examined its expression profile during gonadal sex differentiation. AMHR2 is expressed in the gonads and Müllerian ducts of both sexes but is more strongly expressed in males after the onset of gonadal sex differentiation. In the testes, the AMHR2 protein colocalizes with AMH, within Sertoli cells of the testis cords. AMHR2 protein expression is up-regulated in female embryos treated with the estrogen synthesis inhibitor fadrozole. Conversely, knockdown of the key testis gene DMRT1 leads to disruption of AMHR2 expression in the developing seminiferous cords of males. These results indicate that AMHR2 is developmentally regulated during testicular differentiation in the chicken embryo. AMH signaling may be important for gonadal differentiation in addition to Müllerian duct regression in birds.


Assuntos
Galinhas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gônadas/metabolismo , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Diferenciação Sexual/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Embrião de Galinha , Clonagem Molecular , Feminino , Hibridização In Situ/veterinária , Masculino , Dados de Sequência Molecular , Filogenia , RNA/química , RNA/genética , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
14.
J Virol ; 87(7): 3782-91, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23345523

RESUMO

Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease.


Assuntos
Vírus Hendra/fisiologia , MicroRNAs/metabolismo , Replicação Viral/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Proteínas de Ligação a DNA , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , NF-kappa B/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Front Genome Ed ; 6: 1467080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381324

RESUMO

Genome editing (GnEd) has the potential to provide many benefits to animal agriculture, offering a means for achieving rapid growth, disease resistance, and novel phenotypes. The technology has the potential to be useful for rapidly incorporating traits into existing selectively bred animals without the need for crossbreeding and backcrossing. Yet only four products from animals created via biotechnology, all growth-enhanced fishes, have reached commercialization and only on a limited scale. The past failure of genetically engineered (or GM) products to reach conventional producers can largely be attributed to the high cost of meeting GMO regulatory requirements. We review the history of GMO regulations internationally, noting the influence of Codex Alimentarius on the development of many existing regulatory frameworks. We highlight new regulatory approaches for GnEd organisms, first developed by Argentina, and the adoption of similar approaches by other countries. Such new regulatory approaches allow GnEd organisms that could have been developed by conventional means to be regulated under the same rules as conventional organisms and in the future is likely to enhance the opportunity for biotech animals to enter production. Treating certain GnEd products as conventional has had a large impact on the variety of biotechnological innovations successfully navigating regulatory processes. We suggest that for the full potential of GnEd technologies to be realized, enabling public policies are needed to facilitate use of GnEd as a breeding tool to incorporate new traits within existing animal breeding programs, rather than only a tool to create distinct new products.

16.
Sci Rep ; 14(1): 13466, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866815

RESUMO

CRISPR-Cas9 technology has facilitated development of strategies that can potentially provide more humane and effective methods to control invasive vertebrate species, such as mice. One promising strategy is X chromosome shredding which aims to bias offspring towards males, resulting in a gradual and unsustainable decline of females. This method has been explored in insects with encouraging results. Here, we investigated this strategy in Mus musculus by targeting repeat DNA sequences on the X chromosome with the aim of inducing sufficient DNA damage to specifically eliminate X chromosome-bearing sperm during gametogenesis. We tested three different guide RNAs (gRNAs) targeting different repeats on the X chromosome, together with three male germline-specific promoters for inducing Cas9 expression at different stages of spermatogenesis. A modest bias towards mature Y-bearing sperm was detected in some transgenic males, although this did not translate into significant male-biasing of offspring. Instead, cleavage of the X chromosome during meiosis typically resulted in a spermatogenic block, manifest as small testes volume, empty tubules, low sperm concentration, and sub/infertility. Our study highlights the importance of controlling the timing of CRISPR-Cas9 activity during mammalian spermatogenesis and the sensitivity of spermatocytes to X chromosome disruption.


Assuntos
Sistemas CRISPR-Cas , Espermatogênese , Cromossomo X , Animais , Masculino , Camundongos , Espermatogênese/genética , Cromossomo X/genética , Feminino , RNA Guia de Sistemas CRISPR-Cas/genética , Espermatozoides/metabolismo , Camundongos Transgênicos , Meiose/genética
17.
BMC Cell Biol ; 14: 21, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23590669

RESUMO

BACKGROUND: The scarcity of certain nucleic acid species and the small size of target sequences such as miRNA, impose a significant barrier to subcellular visualization and present a major challenge to cell biologists. Here, we offer a generic and highly sensitive visualization approach (oligo fluorescent in situ hybridization, O-FISH) that can be used to detect such nucleic acids using a single-oligonucleotide probe of 19-26 nucleotides in length. RESULTS: We used O-FISH to visualize miR146a in human and avian cells. Furthermore, we reveal the sensitivity of O-FISH detection by using a HIV-1 model system to show that as little as 1-2 copies of nucleic acids can be detected in a single cell. We were able to discern newly synthesized viral cDNA and, moreover, observed that certain HIV RNA sequences are only transiently available for O-FISH detection. CONCLUSIONS: Taken together, these results suggest that the O-FISH method can potentially be used for in situ probing of, as few as, 1-2 copies of nucleic acid and, additionally, to visualize small RNA such as miRNA. We further propose that the O-FISH method could be extended to understand viral function by probing newly transcribed viral intermediates; and discern the localisation of nucleic acids of interest. Additionally, interrogating the conformation and structure of a particular nucleic acid in situ might also be possible, based on the accessibility of a target sequence.


Assuntos
DNA Complementar/ultraestrutura , DNA Viral/ultraestrutura , HIV-1/ultraestrutura , Hibridização in Situ Fluorescente/métodos , MicroRNAs/ultraestrutura , RNA Viral/ultraestrutura , Animais , Anticorpos Monoclonais/imunologia , Biotina/imunologia , Linhagem Celular , Galinhas , DNA Complementar/genética , DNA Viral/genética , Dosagem de Genes/genética , Células HEK293 , HIV-1/genética , Células HeLa , Humanos , Células Jurkat , MicroRNAs/genética , Microscopia/métodos , Sondas de Oligonucleotídeos , RNA Viral/genética
18.
Chromosome Res ; 20(1): 201-13, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22161018

RESUMO

Differential gene expression regulates tissue morphogenesis. The embryonic gonad is a good example, where the developmental decision to become an ovary or testis is governed by female- or male-specific gene expression. A number of genes have now been identified that control gonadal sex differentiation. However, the potential role of microRNAs (miRNAs) in ovarian and testicular pathways is unknown. In this review, we summarise our current understanding of gonadal differentiation and the possible involvement of miRNAs, using the chicken embryo as a model system. Chickens and other birds have a ZZ/ZW sex chromosome system, in which the female, ZW, is the heterogametic sex, and the male, ZZ, is homogametic (opposite to mammals). The Z-linked DMRT1 gene is thought to direct testis differentiation during embryonic life via a dosage-based mechanism. The conserved SOX9 gene is also likely to play a key role in testis formation. No master ovary determinant has yet been defined, but the autosomal FOXL2 and Aromatase genes are considered central. No miRNAs have been definitively shown to play a role in embryonic gonadal development in chickens or any other vertebrate species. Using next generation sequencing, we carried out an expression-based screen for miRNAs expressed in embryonic chicken gonads at the time of sexual differentiation. A number of miRNAs were identified, including several that showed sexually dimorphic expression. We validated a subset of miRNAs by qRT-PCR, and prediction algorithms were used to identify potential targets. We discuss the possible roles for these miRNAs in gonadal development and how these roles might be tested in the avian model.


Assuntos
Galinhas/fisiologia , Gônadas/fisiologia , MicroRNAs/genética , Cromossomos Sexuais/genética , Diferenciação Sexual , Algoritmos , Animais , Sítios de Ligação , Embrião de Galinha , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/citologia , Gônadas/crescimento & desenvolvimento , Masculino , Processos de Determinação Sexual , Transdução de Sinais , Fatores de Transcrição/genética
19.
Genomics ; 100(6): 352-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22940442

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that play a role in post-transcriptional regulation of gene expression in most eukaryotes. They help in fine-tuning gene expression by targeting messenger RNAs (mRNA). The interactions of miRNAs and mRNAs are sequence specific and computational tools have been developed to predict miRNA target sites on mRNAs, but miRNA research has been mainly focused on target sites within 3' untranslated regions (UTRs) of genes. There is a need for an easily accessible repository of genome wide full length mRNA - miRNA target predictions with versatile search capabilities and visualization tools. We have created a web accessible database of miRNA target predictions for human, mouse, cow, chicken, Zebra fish, fruit fly and Caenorhabditis elegans using two different target prediction algorithms, The database has target predictions for miRNA's on 5' UTRs, coding region and 3' UTRs of all mRNAs. This database can be freely accessed at http://mamsap.it.deakin.edu.au/mirna_targets/.


Assuntos
Bases de Dados de Ácidos Nucleicos , MicroRNAs/química , Fases de Leitura Aberta , Regiões não Traduzidas , Algoritmos , Animais , Caenorhabditis elegans/genética , Bovinos , Galinhas/genética , Drosophila/genética , Genoma Helmíntico , Genoma Humano , Genoma de Inseto , Humanos , Camundongos , MicroRNAs/metabolismo , Análise de Sequência de RNA/métodos , Peixe-Zebra/genética
20.
Mol Pharm ; 9(9): 2450-7, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22794355

RESUMO

We present studies of the delivery of short interfering ribonucleic acid (siRNA) into a green fluorescent protein (GFP) expressing cell line, using lipid nanocarriers in cubic lyotropic liquid crystal form. These carriers are based on glycerol monooleate (GMO) and employ the use of varying concentrations of cationic siRNA binding lipids. The essential physicochemical parameters of the cationic lipid/GMO/siRNA complexes such as particle size, ζ otential, siRNA uptake stability, lyotropic mesophase behavior, cytotoxicity,and gene silencing efficiency were systematically assessed. We find that the lipid nanocarriers were effectively taken up by mammalian cells and that their siRNA payload was able to induce gene silencing in vitro. More importantly, it was found that the nonlamellar structure of some of the lipid nanocarrier formulations were more effective at gene silencing than their lamellar structured counterparts. The development of cationic lipid functionalized nonlamellar GMO-based nanostructured nanoparticles may lead to improved siRNA delivery vehicles.


Assuntos
Portadores de Fármacos/química , Glicerídeos/química , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Animais , Células CHO , Cátions/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica/métodos , Cricetinae , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lipídeos/química , Nanopartículas/administração & dosagem , Tamanho da Partícula , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA