Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34210798

RESUMO

As key players of gene regulation in many bacteria, small regulatory RNAs (sRNAs) associated with the RNA chaperone Hfq shape numerous phenotypic traits, including metabolism, stress response and adaptation, as well as virulence. sRNAs can alter target messenger RNA (mRNA) translation and stability via base pairing. sRNA synthesis is generally under tight transcriptional regulation, but other levels of regulation of sRNA signaling are less well understood. Here we used a fluorescence-based functional screen to identify regulators that can quench sRNA signaling of the iron-responsive sRNA RyhB in Escherichia coli The identified regulators fell into two classes, general regulators (affecting signaling by many sRNAs) and RyhB-specific regulators; we focused on the specific ones here. General regulators include three Hfq-interacting sRNAs, CyaR, ChiX, and McaS, previously found to act through Hfq competition, RNase T, a 3' to 5' exonuclease not previously implicated in sRNA degradation, and YhbS, a putative GCN5-related N-acetyltransferase (GNAT). Two specific regulators were identified. AspX, a 3'end-derived small RNA, specifically represses RyhB signaling via an RNA sponging mechanism. YicC, a previously uncharacterized but widely conserved protein, triggers rapid RyhB degradation via collaboration with the exoribonuclease PNPase. These findings greatly expand our knowledge of regulation of bacterial sRNA signaling and suggest complex regulatory networks for controlling iron homeostasis in bacteria. The fluorescence-based genetic screen system described here is a powerful tool expected to accelerate the discovery of novel regulators of sRNA signaling in many bacteria.


Assuntos
Escherichia coli/genética , Inativação Gênica , Testes Genéticos , RNA Bacteriano/genética , Transdução de Sinais , Acetiltransferases/metabolismo , Cromossomos Bacterianos/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fluorescência , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Genoma Bacteriano , Plasmídeos/genética , Proteólise , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleases/metabolismo , Transdução de Sinais/genética
2.
Alcohol Alcohol ; 58(1): 84-92, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36208183

RESUMO

BACKGROUND: Heavy alcohol consumption-associated chemosensory dysfunction is understudied, and early detection can help predict disease-associated comorbidities, especially those related to four quality of life (QOL) domains (physical, psychological, social and environment). We examined self-reports of chemosensory ability of individuals with different alcohol drinking behaviors and their association with changes in QOL domains. METHODS: Participants (n = 466) were recruited between June 2020 and September 2021 into the NIAAA COVID-19 Pandemic Impact on Alcohol study. Group-based trajectory modeling was used to categorize participants without any known COVID-19 infection into three groups (non-drinkers, moderate drinkers and heavy drinkers) based on their Alcohol Use Disorders Identification Test consumption scores at four different time points (at enrollment, week 4, week 8 and week 12). Linear mixed models were used to examine chemosensory differences between these groups. The associations between chemosensory abilities and QOL were determined in each group. RESULTS: We observed significant impairment in self-reported smell ability of heavy drinking individuals compared to non-drinkers. In contrast, taste ability showed marginal impairment between these groups. There were no significant differences in smell and taste abilities between the moderate and non-drinking groups. Heavy drinkers' impairment in smell and taste abilities was significantly associated with deterioration in their physical, psychological, social and environmental QOL. CONCLUSION: Persistent heavy drinking was associated with lower chemosensory ability. Heavy drinkers' reduced smell and taste function and association with poorer QOL indicate that early assessment of chemosensory changes may be crucial in identifying poorer well-being outcomes in heavy drinkers at risk for alcohol use disorder.


Assuntos
Intoxicação Alcoólica , Alcoolismo , COVID-19 , Humanos , Qualidade de Vida/psicologia , Pandemias , Consumo de Bebidas Alcoólicas/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA