Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 32(16): 2511-3, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153610

RESUMO

UNLABELLED: Promoter capture Hi-C (PCHi-C) allows the genome-wide interrogation of physical interactions between distal DNA regulatory elements and gene promoters in multiple tissue contexts. Visual integration of the resultant chromosome interaction maps with other sources of genomic annotations can provide insight into underlying regulatory mechanisms. We have developed Capture HiC Plotter (CHiCP), a web-based tool that allows interactive exploration of PCHi-C interaction maps and integration with both public and user-defined genomic datasets. AVAILABILITY AND IMPLEMENTATION: CHiCP is freely accessible from www.chicp.org and supports most major HTML5 compliant web browsers. Full source code and installation instructions are available from http://github.com/D-I-L/django-chicp CONTACT: ob219@cam.ac.uk.


Assuntos
Internet , Regiões Promotoras Genéticas , Elementos Reguladores de Transcrição , Software , Cromossomos , Gráficos por Computador , Genoma , Genômica
2.
Diabet Med ; 34(3): 419-425, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27151105

RESUMO

AIM: To examine the hypothesis that the quality, magnitude and breadth of helper T-lymphocyte responses to ß cells differ in Type 1 diabetes according to diagnosis in childhood or adulthood. METHODS: We studied helper T-lymphocyte reactivity against ß-cell autoantigens by measuring production of the pro-inflammatory cytokine interferon-γ and the anti-inflammatory cytokine interleukin-10, using enzyme-linked immunospot assays in 61 people with Type 1 diabetes (within 3 months of diagnosis, positive for HLA DRB1*0301 and/or *0401), of whom 33 were children/adolescents, and a further 91 were unaffected siblings. RESULTS: Interferon-γ responses were significantly more frequent in children with Type 1 diabetes compared with adults (85 vs 61%; P = 0.04). Insulin and proinsulin peptides were preferentially targeted in children (P = 0.0001 and P = 0.04, respectively) and the breadth of the interferon-γ response was also greater, with 70% of children having an interferon-γ response to three or more peptides compared with 14% of adults (P < 0.0001). Islet ß-cell antigen-specific interleukin-10 responses were similar in children and adults in terms of frequency, breadth and magnitude, with the exception of responses to glutamic acid decarboxylase 65, which were significantly less frequent in adults. CONCLUSIONS: At diagnosis of Type 1 diabetes, pro-inflammatory autoreactivity is significantly more prevalent, focuses on a wider range of targets, and is more focused on insulin/proinsulin in children than adults. We interpret this as indicating a more aggressive immunological response in the younger age group that is especially characterized by loss of tolerance to proinsulin. These findings highlight the existence of age-related heterogeneity in Type 1 diabetes pathogenesis that could have relevance to the development of immune-based therapies.


Assuntos
Envelhecimento , Autoimunidade , Linfócitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Modelos Imunológicos , Adolescente , Adulto , Autoanticorpos/análise , Autoantígenos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Células Secretoras de Insulina/metabolismo , Testes de Liberação de Interferon-gama , Interleucina-10/metabolismo , Masculino , Irmãos , Adulto Jovem
3.
Clin Exp Immunol ; 177(3): 571-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24773525

RESUMO

The appearance of circulating islet-specific autoantibodies before disease diagnosis is a hallmark of human type 1 diabetes (T1D), and suggests a role for B cells in the pathogenesis of the disease. Alterations in the peripheral B cell compartment have been reported in T1D patients; however, to date, such studies have produced conflicting results and have been limited by sample size. In this study, we have performed a detailed characterization of the B cell compartment in T1D patients (n = 45) and healthy controls (n = 46), and assessed the secretion of the anti-inflammatory cytokine interleukin (IL)-10 in purified B cells from the same donors. Overall, we found no evidence for a profound alteration of the B cell compartment or in the production of IL-10 in peripheral blood of T1D patients. We also investigated age-related changes in peripheral B cell subsets and confirmed the sharp decrease with age of transitional CD19(+) CD27(-) CD24(hi) CD38(hi) B cells, a subset that has recently been ascribed a putative regulatory function. Genetic analysis of the B cell compartment revealed evidence for association of the IL2-IL21 T1D locus with IL-10 production by both memory B cells (P = 6·4 × 10(-4) ) and islet-specific CD4(+) T cells (P = 2·9 × 10(-3) ). In contrast to previous reports, we found no evidence for an alteration of the B cell compartment in healthy individuals homozygous for the non-synonymous PTPN22 Trp(620) T1D risk allele (rs2476601; Arg(620) Trp). The IL2-IL21 association we have identified, if confirmed, suggests a novel role for B cells in T1D pathogenesis through the production of IL-10, and reinforces the importance of IL-10 production by autoreactive CD4(+) T cells.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Adolescente , Adulto , Fatores Etários , Autoanticorpos/imunologia , Estudos de Casos e Controles , Criança , Citocinas/biossíntese , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Imunofenotipagem , Masculino , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Transdução de Sinais , Adulto Jovem
4.
Diabet Med ; 30(6): 710-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23398374

RESUMO

AIMS: Owing to strong linkage disequilibrium between markers, pinpointing disease associations within genetic regions is difficult in European ancestral populations, most notably the very strong association of the HLA-DRB1*03-DQA1*05:01-DQB1*02:01 haplotype with Type 1 diabetes risk, which is assumed to be because of a combination of HLA-DRB1 and HLA-DQB1. In contrast, populations of African ancestry have greater haplotype diversity, offering the possibility of narrowing down regions and strengthening support for a particular gene in a region being causal. We aimed to study the human leukocyte antigen (HLA) region in African American Type 1 diabetes. METHODS: Two hundred and twenty-seven African American patients with Type 1 diabetes and 471 African American control subjects were tested for association at the HLA class II genes, HLA-DRB1, HLA-DQA1, HLA-DQB1 and 5147 single nucleotide polymorphisms across the major histocompatibility complex region using logistic regression models. Population admixture was accounted for with principal components analysis. RESULTS: Single nucleotide polymorphism marker associations were explained by the HLA associations, with the major peak over the class II loci. The HLA association overall was extremely strong, as expected for Type 1 diabetes, even in African Americans in whom diabetes diagnosis is heterogeneous. In addition, there were unique features: the HLA-DRB1*03 haplotype was split into HLA-DRB1*03:01, which confers greatest susceptibility in these samples (odds ratio 3.17, 95% CI 1.72-5.83) and HLA-DRB1*03:02, an allele rarely observed in Europeans, which confers the greatest protection in these African American samples (odds ratio 0.22, 95% CI 0.09-0.55). CONCLUSIONS: The unique diversity of the African HLA region we have uncovered supports a specific and major role for HLA-DRB1 in HLA-DRB1*03 haplotype-associated Type 1 diabetes risk.


Assuntos
Diabetes Mellitus Tipo 1/genética , Genes MHC da Classe II , Predisposição Genética para Doença , Cadeias HLA-DRB1/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Negro ou Afro-Americano , Alelos , Peptídeo C/sangue , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Cadeias HLA-DRB1/metabolismo , Humanos , Desequilíbrio de Ligação , Modelos Logísticos , Masculino , New Jersey , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal
5.
Nat Genet ; 25(3): 320-3, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10888882

RESUMO

The choice of which population to study in the mapping of common disease genes may be critical. Isolated founder populations, such as that found in Finland, have already proved extremely useful for mapping the genes for specific rare monogenic disorders and are being used in attempts to map the genes underlying common, complex diseases. But simulation results suggest that, under the common disease-common variant hypothesis, most isolated populations will prove no more useful for linkage disequilibrium (LD) mapping of common disease genes than large outbred populations. There is very little empirical data to either support or refute this conclusion at present. Therefore, we evaluated LD between 21 common microsatellite polymorphisms on chromosome 18q21 in 2 genetic isolates (Finland and Sardinia) and compared the results with those observed in two mixed populations (United Kingdom and United States of America). Mean levels of LD were similar across all four populations. Our results provide empirical support for the expectation that genetic isolates like Finland and Sardinia will not prove significantly more valuable than general populations for LD mapping of common variants underlying complex disease.


Assuntos
Cromossomos Humanos Par 18 , Diabetes Mellitus Tipo 1/genética , Desequilíbrio de Ligação , Mapeamento Cromossômico , Finlândia , Genótipo , Humanos , Itália , Repetições de Microssatélites , Polimorfismo Genético
6.
Nat Genet ; 19(3): 301-2, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9662410

RESUMO

It is generally assumed that the male:female (M:F) ratio in patients with type 1 (insulin-dependent) diabetes mellitus (IDDM) is 1. A recent survey, however, revealed that high incidence countries (mainly European) have a high M:F ratio and low incidence ones (Asian and African) have a low M:F ratio. We have now analysed the M:F ratio according to genotype at the major locus, the major histocompatibility complex (MHC; IDDM1). There are two main IDDM1 susceptibility haplotypes, HLA-DR3 and -DR4, which are present in 95% of Caucasian cases. We report here that in medium/high incidence Caucasian populations from the United States of America, United Kingdom and Sardinia (1307 cases), the bias in male incidence is largely restricted to the DR3/X category of patients (X not = DR4) with a M:F ratio of 1.7 (P=9.3x10(-7)), compared with a ratio of 1.0 in the DR4/Y category (Y;DR3). This is additional evidence for significant heterogeneity between the aetiology of 'DR4-associated' and 'DR3-associated' diabetes. We analysed linkage of type 1 diabetes to chromosome X, and as expected, most of the linkage to Xp13-p11 was in the DR3/X affected sibpair families (n=97; peak multipoint MLS at DXS1068=3.5, P=2.7x10(-4); single point MLS=4.5, P=2.7x10(-5)). This is evidence for aetiological heterogeneity at the IDDM1/MHC locus and, therefore, in the search for non-MHC loci in type 1 diabetes, conditioning of linkage data by HLA type is advised.


Assuntos
Diabetes Mellitus Tipo 1/genética , Ligação Genética , Antígeno HLA-DR3/genética , Cromossomo X , Adolescente , Adulto , Feminino , Humanos , Masculino , Caracteres Sexuais
7.
Nat Genet ; 15(3): 289-92, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9054944

RESUMO

Type 1 diabetes or insulin-dependent diabetes mellitus (IDDM) is due to autoimmune destruction of pancreatic beta-cells. Genetic susceptibility to IDDM is encoded by several loci, one of which (IDDM2) maps to a variable number of tandem repeats (VNTR) minisatellite, upstream of the insulin gene (INS). The short class I VNTR alleles (26-63 repeats) predispose to IDDM, while class III alleles (140-210 repeats) have a dominant protective effect. We have reported that, in human adult and fetal pancreas in vivo, class III alleles are associated with marginally lower INS mRNA levels than class I, suggesting transcriptional effects of the VNTR. These may be related to type 1 diabetes pathogenesis, as insulin is the only known beta-cell specific IDDM autoantigen. In search of a more plausible mechanism for the dominant effect of class III alleles, we analysed expression of insulin in human fetal thymus, a critical site for tolerance induction to self proteins. Insulin was detected in all thymus tissues examined and class III VNTR alleles were associated with 2- to 3-fold higher INS mRNA levels than class I. We therefore propose higher levels of thymic INS expression, facilitating immune tolerance induction, as a mechanism for the dominant protective effect of class III alleles.


Assuntos
Diabetes Mellitus Tipo 1/genética , Insulina/biossíntese , Insulina/genética , Repetições Minissatélites , Timo/metabolismo , Aborto Terapêutico , Adulto , Alelos , Animais , Mapeamento Cromossômico , Primers do DNA , Suscetibilidade a Doenças , Feminino , Feto , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Tolerância Imunológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Muridae , Reação em Cadeia da Polimerase , Gravidez , RNA Mensageiro/biossíntese , Timo/embriologia , Transcrição Gênica
8.
Nat Genet ; 19(1): 98-100, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9590300

RESUMO

Size at birth is an important determinant of perinatal survival and has also been associated with the risk for cardiovascular disease and type 2 diabetes in adult life. Common genetic variation that regulates fetal growth could therefore influence perinatal survival and predispose to the development of adult disease. We have tested the insulin gene (INS) variable number of tandem repeats (VNTR) locus, which in Caucasians has two main allele sizes (class I and class III; ref. 3), as a functional candidate polymorphism for association with size at birth, as it has been shown to influence transcription of INS (refs 3-5). In a cohort of 758 term singletons (Avon Longitudinal Study of Pregnancy and Childhood; ALSPAC) followed longitudinally from birth to 2 years, we detected significant genetic associations with size at birth: class III homozygotes had larger mean head circumference (P=0.004) than class I homozygotes. These associations were amplified in babies who did not show postnatal realignment of growth (45%), and were also evident for length (P=0.015) and weight (P=0.009) at birth. The INS VNTR III/II genotype might have bestowed a perinatal survival during human history by conferring larger size at birth. Common genetic variation of this kind may contribute to reported associations between birth size and adult disease.


Assuntos
Peso ao Nascer/genética , Insulina/genética , Repetições Minissatélites , Pré-Escolar , Estudos de Coortes , Suscetibilidade a Doenças , Genótipo , Homozigoto , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais
9.
Nat Genet ; 17(3): 350-2, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9354805

RESUMO

The IDDM2 type 1 diabetes susceptibility locus was mapped to and identified as allelic variation at the insulin gene (INS) VNTR regulatory polymorphism. In Caucasians, INS VNTR alleles divide into two discrete size classes. Class I alleles (26 to 63 repeats) predispose in a recessive way to type 1 diabetes, while class III alleles (140 to more than 200 repeats) are dominantly protective. The protective effect may be explained by higher levels of class III VNTR-associated INS mRNA in thymus such that elevated levels of preproinsulin protein enhance immune tolerance to preproinsulin, a key autoantigen in type 1 diabetes pathogenesis. The mode of action of IDDM2 is complicated, however, by parent-of-origin effects and possible allelic heterogeneity within the two defined allele classes. We have now analysed transmission of specific VNTR alleles in 1,316 families and demonstrate that a particular class I allele does not predispose to disease when paternally inherited, suggestive of polymorphic imprinting. But this paternal effect is observed only when the father's untransmitted allele is a class III. This allelic interaction is reminiscent of epigenetic phenomena observed in plants (for example, paramutation; ref. 17) and in yeast (for example, trans-inactivation; ref. 18). If untransmitted chromosomes can have functional effects on the biological properties of transmitted chromosomes, the implications for human genetics and disease are potentially considerable.


Assuntos
Diabetes Mellitus Tipo 1/genética , Insulina/genética , Alelos , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/epidemiologia , Feminino , Variação Genética , Genética Populacional , Homozigoto , Humanos , Masculino
10.
Nat Genet ; 19(3): 297-300, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9662409

RESUMO

Genetic analysis of a mouse model of major histocompatability complex (MHC)-associated autoimmune type 1 (insulin-dependent) diabetes mellitus (IDDM) has shown that the disease is caused by a combination of a major effect at the MHC and at least ten other susceptibility loci elsewhere in the genome. A genome-wide scan of 93 affected sibpair families (ASP) from the UK (UK93) indicated a similar genetic basis for human type 1 diabetes, with the major genetic component at the MHC locus (IDDM1) explaining 34% of the familial clustering of the disease (lambda(s)=2.5; refs 3,4). In the present report, we have analysed a further 263 multiplex families from the same population (UK263) to provide a total UK data set of 356 ASP families (UK356). Only four regions of the genome outside IDDM1/MHC, which was still the only major locus detected, were not excluded at lambda(s)=3 and lod=-2, of which two showed evidence of linkage: chromosome 10p13-p11 (maximum lod score (MLS)=4.7, P=3x10(-6), lambda(s)=1.56) and chromosome 16q22-16q24 (MLS=3.4, P=6.5x10(-5), lambda(s)=1.6). These and other novel regions, including chromosome 14q12-q21 and chromosome 19p13-19q13, could potentially harbour disease loci but confirmation and fine mapping cannot be pursued effectively using conventional linkage analysis. Instead, more powerful linkage disequilibrium-based and haplotype mapping approaches must be used; such data is already emerging for several type 1 diabetes loci detected initially by linkage.


Assuntos
Diabetes Mellitus Tipo 1/genética , Adolescente , Adulto , Mapeamento Cromossômico , Predisposição Genética para Doença , Humanos , Reino Unido
11.
Nat Genet ; 29(2): 233-7, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11586306

RESUMO

Genome-wide linkage disequilibrium (LD) mapping of common disease genes could be more powerful than linkage analysis if the appropriate density of polymorphic markers were known and if the genotyping effort and cost of producing such an LD map could be reduced. Although different metrics that measure the extent of LD have been evaluated, even the most recent studies have not placed significant emphasis on the most informative and cost-effective method of LD mapping-that based on haplotypes. We have scanned 135 kb of DNA from nine genes, genotyped 122 single-nucleotide polymorphisms (SNPs; approximately 184,000 genotypes) and determined the common haplotypes in a minimum of 384 European individuals for each gene. Here we show how knowledge of the common haplotypes and the SNPs that tag them can be used to (i) explain the often complex patterns of LD between adjacent markers, (ii) reduce genotyping significantly (in this case from 122 to 34 SNPs), (iii) scan the common variation of a gene sensitively and comprehensively and (iv) provide key fine-mapping data within regions of strong LD. Our results also indicate that, at least for the genes studied here, the current version of dbSNP would have been of limited utility for LD mapping because many common haplotypes could not be defined. A directed re-sequencing effort of the approximately 10% of the genome in or near genes in the major ethnic groups would aid the systematic evaluation of the common variant model of common disease.


Assuntos
Predisposição Genética para Doença , Haplótipos , Sequência de Bases , DNA , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Homologia de Sequência do Ácido Nucleico
12.
Diabetologia ; 55(7): 1978-84, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526605

RESUMO

AIMS/HYPOTHESIS: Autoantibodies to zinc transporter 8 (ZnT8A) are associated with risk of type 1 diabetes. Apart from the SLC30A8 gene itself, little is known about the genetic basis of ZnT8A. We hypothesise that other loci in addition to SLC30A8 are associated with ZnT8A. METHODS: The levels of ZnT8A were measured in 2,239 British type 1 diabetic individuals diagnosed before age 17 years, with a median duration of diabetes of 4 years. Cases were tested at over 775,000 loci genome wide (including 53 type 1 diabetes associated regions) for association with positivity for ZnT8A. ZnT8A were also measured in an independent dataset of 855 family members with type 1 diabetes. RESULTS: Only FCRL3 on chromosome 1q23.1 and the HLA class I region were associated with positivity for ZnT8A. rs7522061T>C was the most associated single nucleotide polymorphism (SNP) in the FCRL3 region (p = 1.13 × 10(-16)). The association was confirmed in the family dataset (p ≤ 9.20 × 10(-4)). rs9258750A>G was the most associated variant in the HLA region (p = 2.06 × 10(-9) and p = 0.0014 in family cases). The presence of ZnT8A was not associated with HLA-DRB1, HLA-DQB1, HLA-A, HLA-B or HLA-C (p > 0.05). Unexpectedly, the two loci associated with the presence of ZnT8A did not alter risk of having type 1 diabetes, and the 53 type 1 diabetes risk loci did not influence positivity for ZnT8A, despite them being disease specific. CONCLUSIONS/INTERPRETATION: ZnT8A are not primary pathogenic factors in type 1 diabetes. Nevertheless, ZnT8A testing in combination with other autoantibodies facilitates disease prediction, despite the biomarker not being under the same genetic control as the disease.


Assuntos
Autoanticorpos/genética , Proteínas de Transporte de Cátions/genética , Diabetes Mellitus Tipo 1/genética , Anticorpos Anti-Insulina/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Transporte de Cátions/imunologia , Criança , Diabetes Mellitus Tipo 1/imunologia , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Anticorpos Anti-Insulina/imunologia , Masculino , Transportador 8 de Zinco
13.
Diabetologia ; 55(4): 996-1000, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278338

RESUMO

AIMS/HYPOTHESIS: Over 50 regions of the genome have been associated with type 1 diabetes risk, mainly using large case/control collections. In a recent genome-wide association (GWA) study, 18 novel susceptibility loci were identified and replicated, including replication evidence from 2,319 families. Here, we, the Type 1 Diabetes Genetics Consortium (T1DGC), aimed to exclude the possibility that any of the 18 loci were false-positives due to population stratification by significantly increasing the statistical power of our family study. METHODS: We genotyped the most disease-predicting single-nucleotide polymorphisms at the 18 susceptibility loci in 3,108 families and used existing genotype data for 2,319 families from the original study, providing 7,013 parent-child trios for analysis. We tested for association using the transmission disequilibrium test. RESULTS: Seventeen of the 18 susceptibility loci reached nominal levels of significance (p < 0.05) in the expanded family collection, with 14q24.1 just falling short (p = 0.055). When we allowed for multiple testing, ten of the 17 nominally significant loci reached the required level of significance (p < 2.8 × 10(-3)). All susceptibility loci had consistent direction of effects with the original study. CONCLUSIONS/INTERPRETATION: The results for the novel GWA study-identified loci are genuine and not due to population stratification. The next step, namely correlation of the most disease-associated genotypes with phenotypes, such as RNA and protein expression analyses for the candidate genes within or near each of the susceptibility regions, can now proceed.


Assuntos
Diabetes Mellitus Tipo 1/genética , Loci Gênicos , Predisposição Genética para Doença , População Branca/genética , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
14.
Diabet Med ; 28(10): 1141-3, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21812815

RESUMO

European experts on autoimmune Type 1 diabetes met for 2 days in October 2010 in Cambridge, to review the state-of-the-art and to discuss strategies for prevention of Type 1 diabetes (http://www-gene.cimr.cam.ac.uk/todd/sub_pages/T1D_prevention_Cambridge_workshop_20_21Oct2010.pdf). Meeting sessions examined the epidemiology of Type 1 diabetes; possible underlying causes of the continuing and rapid increase in Type 1 diabetes incidence at younger ages; and lessons learned from previous prevention trials. Consensus recommendations from the meeting were: 1. Resources such as national diabetes registries and natural history studies play an essential role in developing and refining assays to be used in screening for risk factors for Type 1 diabetes. 2. It is crucial to dissect out the earliest physiological events after birth, which are controlled by the susceptibility genes now identified in Type 1 diabetes, and the environmental factors that might affect these phenotypes, in order to bring forward a mechanistic approach to designing future prevention trials. 3. Current interventions at later stages of disease, such as in newly diagnosed Type 1 diabetes, have relied mainly on non-antigen-specific mechanisms. For primary prevention-preventing the onset of autoimmunity-interventions must be based on knowledge of the actual disease process such that: participants in a trial would be stratified according the disease-associated molecular phenotypes; the autoantigen(s) and immune responses to them; and the manipulation of the environment, as early as possible in life. Combinations of interventions should be considered as they may allow targeting different components of disease, thus lowering side effects while increasing efficacy.


Assuntos
Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Idade de Início , Autoimunidade/genética , Ensaios Clínicos como Assunto , Diabetes Mellitus Tipo 1/genética , Europa (Continente) , Feminino , Humanos , Incidência , Masculino , Prevenção Primária , Projetos de Pesquisa , Fatores de Risco
15.
J Exp Med ; 180(5): 1705-13, 1994 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-7964456

RESUMO

Development of diabetes in NOD mice is polygenic and dependent on both major histocompatibility complex (MHC)-linked and non-MHC-linked insulin-dependent diabetes (Idd) genes. In (F1 x NOD) backcross analyses using the B10.H-2g7 or B6.PL-Thy1a strains as the outcross partner, we previously identified several non-MHC Idd loci, including two located on chromosome 3 (Idd3 and Idd10). In the current study, we report that protection from diabetes is observed in NOD congenic strains having B6.PL-Thy1a- or B10-derived alleles at Idd3 or Idd10. It is important to note that only partial protection is provided by two doses of the resistance allele at either Idd3 or Idd10. However, nearly complete protection from diabetes is achieved when resistance alleles are expressed at both loci. Development of these congenic strains has allowed Idd3 to be localized between Glut2 and D3Mit6, close to the Il2 locus.


Assuntos
Alelos , Mapeamento Cromossômico , Diabetes Mellitus Tipo 1/genética , Camundongos Endogâmicos NOD/genética , Animais , Sequência de Bases , Diabetes Mellitus Tipo 1/prevenção & controle , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular
16.
Genes Immun ; 10 Suppl 1: S60-3, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19956103

RESUMO

Type I diabetes (T1D) results from interactions between environmental exposures and genetic susceptibility leading to immune dysfunction and destruction of the insulin-producing beta cells of the pancreas. Vitamin D deficiency is likely to be one of the many environmental factors influencing T1D development and diagnosis, and, hence, the hormone receptor gene, VDR, was examined for association with T1D risk. The Type I Diabetes Genetics Consortium genotyped 38 single nucleotide polymorphisms (SNPs) in 1654 T1D nuclear families (6707 individuals, 3399 affected). Genotypes for 38 SNPs were assigned using the Illumina (ILMN) and Sequenom (SQN) technology. The analysis of data release as of July 2008 is reported for both platforms. No evidence of association of VDR SNPs with T1D at P<0.01 was obtained in the overall sample set, nor in subgroups analyses of the parent-of-origin, sex of offspring and HLA risk once adjusted for multiple testing.


Assuntos
Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Genótipo , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/imunologia , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Humanos , Masculino , Núcleo Familiar
17.
Genes Immun ; 10 Suppl 1: S74-84, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19956106

RESUMO

In recent years the pace of discovery of genetic associations with type I diabetes (T1D) has accelerated, with the total number of confirmed loci, including the major histocompatibility complex (MHC) region, reaching 43. However, much of the deciphering of the associations at these, and the established T1D loci, has yet to be performed in sufficient numbers of samples or with sufficient markers. Here, 257 single-nucleotide polymorphisms (SNPs) have been genotyped in 19 candidate genes (INS, PTPN22, IL2RA, CTLA4, IFIH1, SUMO4, VDR, PAX4, OAS1, IRS1, IL4, IL4R, IL13, IL12B, CEACAM21, CAPSL, Q7Z4c4(5Q), FOXP3, EFHB) in 2300 affected sib-pair families and tested for association with T1D as part of the Type I Diabetes Genetics Consortium's candidate gene study. The study had approximately 80% power at alpha=0.002 and a minor allele frequency of 0.2 to detect an effect with a relative risk (RR) of 1.20, which drops to just 40% power for a RR of 1.15. At the INS gene, rs689 (-23 HphI) was the most associated SNP (P=3.8 x 10(-31)), with the estimated RR=0.57 (95% confidence interval, 0.52-0.63). In addition, rs689 was associated with age-at-diagnosis of T1D (P=0.001), with homozygosity for the T1D protective T allele, delaying the onset of T1D by approximately 2 years in these families. At PTPN22, rs2476601 (R620W), in agreement with previous reports, was the most significantly associated SNP (P=6.9 x 10(-17)), with RR=1.55 (1.40-1.72). Evidence for association with T1D was observed for the IFIH1 SNP, rs1990760 (P=7.0 x 10(-4)), with RR=0.88 (0.82-0.95) and the CTLA4 SNP rs1427676 (P=0.0005), with RR=1.14 (1.06-1.23). In contrast, no convincing evidence of association was obtained for SUMO4, VDR, PAX4, OAS1, IRS1, IL4, IL4R, IL13, IL12B, CEACAM21 or CAPSL gene regions (http://www.T1DBase.org).


Assuntos
Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Alelos , Diabetes Mellitus Tipo 1/imunologia , Feminino , Genótipo , Humanos , Masculino , Núcleo Familiar , Fatores de Risco
18.
Genes Immun ; 10 Suppl 1: S85-94, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19956107

RESUMO

The advent of genome-wide association (GWA) studies has revolutionized the detection of disease loci and provided abundant evidence for previously undetected disease loci that can be pooled together in meta-analysis studies or used to design follow-up studies. A total of 1715 SNPs from the Wellcome Trust Case Control Consortium GWA study of type I diabetes (T1D) were selected and a follow-up study was conducted in 1410 affected sib-pair families assembled by the Type I Diabetes Genetics Consortium. In addition to the support for previously identified loci (PTPN22/1p13; ERBB3/12q13; SH2B3/12q24; CLEC16A/16p13; UBASH3A/21q22), evidence supporting two new and distinct chromosome locations associated with T1D was observed: FHOD3/18q12 (rs2644261, P=5.9 x 10(-4)) and Xp22 (rs5979785, P=6.8 x 10(-3); http://www.T1DBase.org). There was independent support for both SNPs in a GWA meta-analysis of 7514 cases and 9045 controls (P values=5.0 x 10(-3) and 6.7 x 10(-6), respectively). The chromosome 18q12 region contains four genes, none of which are obvious functional candidate genes. In contrast, the Xp22 SNP is located 30 kb centromeric of the functional candidate genes TLR8 and TLR7 genes. Both TLR8 and TLR7 are functional candidate genes owing to their key roles as pathogen recognition receptors and, in the case of TLR7, overexpression has been associated directly with murine autoimmune disease.


Assuntos
Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/imunologia , Feminino , Seguimentos , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Camundongos , Núcleo Familiar
19.
Genes Immun ; 10 Suppl 1: S95-120, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19956108

RESUMO

A candidate gene study was conducted on 10 established type II diabetes genes and 45 genes associated with autoimmune diseases, including type I diabetes (T1D), in a maximum of 1410 affected sib-pair families assembled by the Type I Diabetes Genetics Consortium. Associations at P values <10(-3) were found for three known T1D regions at chromosomes 4q27, 12q13.2 and 12q24.13 (http://www.T1DBase.org). Support was obtained for a newly identified T1D candidate locus on chromosome 12q13.3-12q14.1 (rs1678536/KIF5A: P=8.1 x 10(-3); relative risk (RR) for minor allele=0.89, 95% CI=0.82-0.97), which has a separate association from the previously reported T1D candidate locus ERBB3/12q13.2-q13.3. Our new evidence adds to that previously published for the same gene region in a T1D case-control study (rs1678542; P=3.0 x 10(-4); odds ratio (OR)=0.92, 95% CI=0.88-0.96). This region, which contains many genes, has also been associated with rheumatoid arthritis.


Assuntos
Doenças Autoimunes/genética , Cromossomos Humanos Par 12 , Cromossomos Humanos Par 4 , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Doenças Autoimunes/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 2/imunologia , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
20.
Genes Immun ; 10 Suppl 1: S1-4, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19956093

RESUMO

The Type I Diabetes Genetics Consortium (T1DGC) is an international, multicenter research program with two primary goals. The first goal is to identify genomic regions and candidate genes whose variants modify an individual's risk of type I diabetes (T1D) and help explain the clustering of the disease in families. The second goal is to make research data available to the research community and to establish resources that can be used by, and that are fully accessible to, the research community. To facilitate the access to these resources, the T1DGC has developed a Consortium Agreement (http://www.t1dgc.org) that specifies the rights and responsibilities of investigators who participate in Consortium activities. The T1DGC has assembled a resource of affected sib-pair families, parent-child trios, and case-control collections with banks of DNA, serum, plasma, and EBV-transformed cell lines. In addition, both candidate gene and genome-wide (linkage and association) studies have been performed and displayed in T1DBase (http://www.t1dbase.org) for all researchers to use in their own investigations. In this supplement, a subset of the T1DGC collection has been used to investigate earlier published candidate genes for T1D, to confirm the results from a genome-wide association scan for T1D, and to determine associations with candidate genes for other autoimmune diseases or with type II diabetes that may be involved with beta-cell function.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA/imunologia , Humanos , Internet , Publicações Periódicas como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA