Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 22(9): 1230-1240, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28461700

RESUMO

With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research.


Assuntos
Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Conectoma , Humanos , Vias Neurais
2.
Mol Psychiatry ; 20(10): 1197-204, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25385369

RESUMO

Memory impairment is the cardinal early feature of Alzheimer's disease, a highly prevalent disorder whose causes remain only partially understood. To identify novel genetic predictors, we used an integrative genomics approach to perform the largest study to date of human memory (n=14 781). Using a genome-wide screen, we discovered a novel association of a polymorphism in the pro-apoptotic gene FASTKD2 (fas-activated serine/threonine kinase domains 2; rs7594645-G) with better memory performance and replicated this finding in independent samples. Consistent with a neuroprotective effect, rs7594645-G carriers exhibited increased hippocampal volume and gray matter density and decreased cerebrospinal fluid levels of apoptotic mediators. The MTOR (mechanistic target of rapamycin) gene and pathways related to endocytosis, cholinergic neurotransmission, epidermal growth factor receptor signaling and immune regulation, among others, also displayed association with memory. These findings nominate FASTKD2 as a target for modulating neurodegeneration and suggest potential mechanisms for therapies to combat memory loss in normal cognitive aging and dementia.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Feminino , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Estudos Longitudinais , Masculino , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Polimorfismo de Nucleotídeo Único , Relação Estrutura-Atividade
3.
Mol Psychiatry ; 19(4): 452-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23568192

RESUMO

Bipolar disorder (BD) is a polygenic disorder that shares substantial genetic risk factors with major depressive disorder (MDD). Genetic analyses have reported numerous BD susceptibility genes, while some variants, such as single-nucleotide polymorphisms (SNPs) in CACNA1C have been successfully replicated, many others have not and subsequently their effects on the intermediate phenotypes cannot be verified. Here, we studied the MDD-related gene CREB1 in a set of independent BD sample groups of European ancestry (a total of 64,888 subjects) and identified multiple SNPs significantly associated with BD (the most significant being SNP rs6785[A], P=6.32 × 10(-5), odds ratio (OR)=1.090). Risk SNPs were then subjected to further analyses in healthy Europeans for intermediate phenotypes of BD, including hippocampal volume, hippocampal function and cognitive performance. Our results showed that the risk SNPs were significantly associated with hippocampal volume and hippocampal function, with the risk alleles showing a decreased hippocampal volume and diminished activation of the left hippocampus, adding further evidence for their involvement in BD susceptibility. We also found the risk SNPs were strongly associated with CREB1 expression in lymphoblastoid cells (P<0.005) and the prefrontal cortex (P<1.0 × 10(-6)). Remarkably, population genetic analysis indicated that CREB1 displayed striking differences in allele frequencies between continental populations, and the risk alleles were completely absent in East Asian populations. We demonstrated that the regional prevalence of the CREB1 risk alleles in Europeans is likely caused by genetic hitchhiking due to natural selection acting on a nearby gene. Our results suggest that differential population histories due to natural selection on regional populations may lead to genetic heterogeneity of susceptibility to complex diseases, such as BD, and explain inconsistencies in detecting the genetic markers of these diseases among different ethnic populations.


Assuntos
Transtorno Bipolar/etnologia , Transtorno Bipolar/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Hipocampo/patologia , Polimorfismo de Nucleotídeo Único/genética , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/genética , Estudos de Casos e Controles , Biologia Computacional , Feminino , Frequência do Gene/genética , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem , Testes Neuropsicológicos , Fenótipo , RNA Mensageiro/metabolismo , População Branca/genética
4.
Br J Psychiatry ; 205(5): 369-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25213158

RESUMO

BACKGROUND: Hippocampal abnormalities have been demonstrated in schizophrenia. It is unclear whether these abnormalities worsen with age, and whether they affect cognition and function. AIMS: To determine whether hippocampal abnormalities in chronic schizophrenia are associated with age, cognition and socio-occupational function. METHOD: Using 3 T magnetic resonance imaging we scanned 100 persons aged 19-82 years: 51 were out-patients with stable schizophrenia at least 2 years after diagnosis and 49 were healthy volunteers matched for age and gender. Automated analysis was used to determine hippocampal volume and shape. RESULTS: There were differential effects of age in the schizophrenia and control samples on total hippocampal volume (group × age interaction: F(1,95) = 6.57, P = 0.012), with steeper age-related reduction in the schizophrenia group. Three-dimensional shape analysis located the age-related deformations predominantly in the mid-body of the hippocampus. In the schizophrenia group similar patterns of morphometric abnormalities were correlated with impaired cognition and poorer socio-occupational function. CONCLUSIONS: Hippocampal abnormalities are associated with age in people with chronic schizophrenia, with a steeper decline than in healthy individuals. These abnormalities are associated with cognitive and functional deficits, suggesting that hippocampal morphometry may be a biomarker for cognitive decline in older patients with schizophrenia.


Assuntos
Envelhecimento/patologia , Cognição , Hipocampo/patologia , Esquizofrenia/patologia , Psicologia do Esquizofrênico , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Pacientes Ambulatoriais , Adulto Jovem
5.
Neuroimage ; 80: 220-33, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23707579

RESUMO

Perhaps more than any other "-omics" endeavor, the accuracy and level of detail obtained from mapping the major connection pathways in the living human brain with diffusion MRI depend on the capabilities of the imaging technology used. The current tools are remarkable; allowing the formation of an "image" of the water diffusion probability distribution in regions of complex crossing fibers at each of half a million voxels in the brain. Nonetheless our ability to map the connection pathways is limited by the image sensitivity and resolution, and also the contrast and resolution in encoding of the diffusion probability distribution. The goal of our Human Connectome Project (HCP) is to address these limiting factors by re-engineering the scanner from the ground up to optimize the high b-value, high angular resolution diffusion imaging needed for sensitive and accurate mapping of the brain's structural connections. Our efforts were directed based on the relative contributions of each scanner component. The gradient subsection was a major focus since gradient amplitude is central to determining the diffusion contrast, the amount of T2 signal loss, and the blurring of the water PDF over the course of the diffusion time. By implementing a novel 4-port drive geometry and optimizing size and linearity for the brain, we demonstrate a whole-body sized scanner with G(max) = 300 mT/m on each axis capable of the sustained duty cycle needed for diffusion imaging. The system is capable of slewing the gradient at a rate of 200 T/m/s as needed for the EPI image encoding. In order to enhance the efficiency of the diffusion sequence we implemented a FOV shifting approach to Simultaneous MultiSlice (SMS) EPI capable of unaliasing 3 slices excited simultaneously with a modest g-factor penalty allowing us to diffusion encode whole brain volumes with low TR and TE. Finally we combine the multi-slice approach with a compressive sampling reconstruction to sufficiently undersample q-space to achieve a DSI scan in less than 5 min. To augment this accelerated imaging approach we developed a 64-channel, tight-fitting brain array coil and show its performance benefit compared to a commercial 32-channel coil at all locations in the brain for these accelerated acquisitions. The technical challenges of developing the over-all system are discussed as well as results from SNR comparisons, ODF metrics and fiber tracking comparisons. The ultra-high gradients yielded substantial and immediate gains in the sensitivity through reduction of TE and improved signal detection and increased efficiency of the DSI or HARDI acquisition, accuracy and resolution of diffusion tractography, as defined by identification of known structure and fiber crossing.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Modelos Anatômicos , Modelos Neurológicos , Animais , Humanos , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia
6.
Cereb Cortex ; 22(12): 2858-66, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22223853

RESUMO

Recent magnetic resonance imaging (MRI) studies suggest that abnormalities in Huntington's disease (HD) extend to white matter (WM) tracts in early HD and even in presymptomatic stages. Thus, changes of the corpus callosum (CC) may reflect various aspects of HD pathogenesis. We recruited 17 HD patients, 17 pre-HD subjects, and 34 healthy age-matched controls. Three-dimensional anatomical MRI and diffusion tensor images of the brain were acquired on a 3T scanner. Combining region-of-interest analyses, voxel-based morphometry, and tract-based spatial statistics, we investigated callosal thickness, WM density, fractional anisotropy, and radial and axial diffusivities. Compared with controls, pre-HD subjects showed reductions of the isthmus, likely due to myelin damage. Compared with pre-HD subjects, HD patients showed reductions of isthmus and body, with axonal damage confined to the body. Compared with controls, HD patients had significantly decreased callosal measures in extended regions across almost the entire CC. At this disease stage, both myelin and axonal damage are detectable. Supplementary multiple regression analyses revealed that WM reduction density in the isthmus as well as Disease Burden scores allowed to predict the "HD development" index. While callosal changes seem to proceed in a posterior-to-anterior direction as the diseases progresses, this observation requires validation in future longitudinal investigations.


Assuntos
Corpo Caloso/patologia , Doença de Huntington/patologia , Imageamento por Ressonância Magnética/métodos , Fibras Nervosas Mielinizadas/patologia , Técnica de Subtração , Adulto , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Mol Psychiatry ; 16(2): 227-36, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20029391

RESUMO

Attention is increasingly being given to understanding sex difference in psychopathology to better understand the etiology of disorders. This study tests the hypothesis that sex differences in ventral and middle frontal gray volume contribute to sex differences in antisocial personality disorder (APD) and crime. Participants were recruited from temporary employment agencies, consisting of normal controls, substance/alcohol-dependent controls, axis I/II psychiatric controls and individuals with APD. An independent sample of female volunteers was also recruited. Magnetic resonance imaging volumes of superior frontal, middle frontal, inferior frontal, orbital frontal and rectal gyral frontal gray matter, and dimensional scores of APD and criminal behavior were assessed. APD males when compared with male controls showed an 8.7% reduction in orbitofrontal gray volume, a 17.3% reduction in middle frontal gray and a 16.1% reduction in right rectal gray. Reduced middle and orbitofrontal volumes were significantly associated with increased APD symptoms and criminal offending in both males and females. Males as a whole had reduced orbitofrontal and middle frontal gray volume when compared with females, and controlling for these brain differences reduced the gender difference in the antisocial personality/behavior by 77.3%. Findings were not a function of psychiatric comorbidity, psychosocial risk factors, head injury or trauma exposure. Findings implicate structural differences in the ventral and middle frontal gray as both a risk factor for APD and as a partial explanation for sex differences in APD.


Assuntos
Transtorno da Personalidade Antissocial/etiologia , Transtorno da Personalidade Antissocial/patologia , Córtex Pré-Frontal/fisiopatologia , Adulto , Transtorno da Personalidade Antissocial/epidemiologia , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/epidemiologia , Inventário de Personalidade , Valor Preditivo dos Testes , Psicologia , Fatores Sexuais , Estatística como Assunto
8.
Mol Psychiatry ; 16(9): 927-37, 881, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21502949

RESUMO

The caudate is a subcortical brain structure implicated in many common neurological and psychiatric disorders. To identify specific genes associated with variations in caudate volume, structural magnetic resonance imaging and genome-wide genotypes were acquired from two large cohorts, the Alzheimer's Disease NeuroImaging Initiative (ADNI; N=734) and the Brisbane Adolescent/Young Adult Longitudinal Twin Study (BLTS; N=464). In a preliminary analysis of heritability, around 90% of the variation in caudate volume was due to genetic factors. We then conducted genome-wide association to find common variants that contribute to this relatively high heritability. Replicated genetic association was found for the right caudate volume at single-nucleotide polymorphism rs163030 in the ADNI discovery sample (P=2.36 × 10⁻6) and in the BLTS replication sample (P=0.012). This genetic variation accounted for 2.79 and 1.61% of the trait variance, respectively. The peak of association was found in and around two genes, WDR41 and PDE8B, involved in dopamine signaling and development. In addition, a previously identified mutation in PDE8B causes a rare autosomal-dominant type of striatal degeneration. Searching across both samples offers a rigorous way to screen for genes consistently influencing brain structure at different stages of life. Variants identified here may be relevant to common disorders affecting the caudate.


Assuntos
Núcleo Caudado/anatomia & histologia , Dopamina/genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , 3',5'-AMP Cíclico Fosfodiesterases/genética , Adulto , Fatores Etários , Idoso , Feminino , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Hereditariedade/genética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/estatística & dados numéricos , Polimorfismo de Nucleotídeo Único
9.
Mol Psychiatry ; 14(10): 976-86, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18607377

RESUMO

Schizophrenia is associated with structural brain abnormalities, but the timing of onset and course of these changes remains unclear. Longitudinal magnetic resonance imaging (MRI) studies have demonstrated progressive brain volume decreases in patients around and after the onset of illness, although considerable discrepancies exist regarding which brain regions are affected. The anatomical pattern of these progressive changes in schizophrenia is largely unknown. In this study, MRI scans were acquired repeatedly from 16 schizophrenia patients approximately 2 years apart following their first episode of illness, and also from 14 age-matched healthy subjects. Cortical Pattern Matching, in combination with Structural Image Evaluation, using Normalisation, of Atrophy, was applied to compare the rates of cortical surface contraction between patients and controls. Surface contraction in the dorsal surfaces of the frontal lobe was significantly greater in patients with first-episode schizophrenia (FESZ) compared with healthy controls. Overall, brain surface contraction in patients and healthy controls showed similar anatomical patterns, with that of the former group exaggerated in magnitude across the entire brain surface. That the pattern of structural change in the early course of schizophrenia corresponds so closely to that associated with normal development is consistent with the hypothesis that a schizophrenia-related factor interacts with normal adolescent brain developmental processes in the pathophysiology of schizophrenia. The exaggerated progressive changes seen in patients with schizophrenia may reflect an increased rate of synaptic pruning, resulting in excessive loss of neuronal connectivity, as predicted by the late neurodevelopmental hypothesis of the illness.


Assuntos
Encéfalo/patologia , Imageamento por Ressonância Magnética , Esquizofrenia/patologia , Adolescente , Adulto , Atrofia , Mapeamento Encefálico , Estudos de Casos e Controles , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Tamanho do Órgão
10.
Neuroimage ; 47(4): 1185-95, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19447182

RESUMO

Due to its crucial role for memory processes and its relevance in neurological and psychiatric disorders, the hippocampus has been the focus of neuroimaging research for several decades. In vivo measurement of human hippocampal volume and shape with magnetic resonance imaging has become an important element of neuroimaging research. Nevertheless, volumetric findings are still inconsistent and controversial for many psychiatric conditions including affective disorders. Here we review the wealth of anatomical protocols for the delineation of the hippocampus in MR images, taking into consideration 71 different published protocols from the neuroimaging literature, with an emphasis on studies of affective disorders. We identified large variations between protocols in five major areas. 1) The inclusion/exclusion of hippocampal white matter (alveus and fimbria), 2) the definition of the anterior hippocampal-amygdala border, 3) the definition of the posterior border and the extent to which the hippocampal tail is included, 4) the definition of the inferior medial border of the hippocampus, and 5) the use of varying arbitrary lines. These are major sources of variance between different protocols. In contrast, the definitions of the lateral, superior, and inferior borders are less disputed. Directing resources to replication studies that incorporate characteristics of the segmentation protocols presented herein may help resolve seemingly contradictory volumetric results between prior neuroimaging studies and facilitate the appropriate selection of protocols for manual or automated delineation of the hippocampus for future research purposes.


Assuntos
Algoritmos , Hipocampo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Inteligência Artificial , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Magn Reson Med ; 61(1): 205-14, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19097208

RESUMO

Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Modelos Neurológicos , Modelos Estatísticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuições Estatísticas
12.
Schizophr Bull ; 35(1): 67-81, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19074498

RESUMO

Deficits in the connectivity between brain regions have been suggested to play a major role in the pathophysiology of schizophrenia. A functional magnetic resonance imaging (fMRI) analysis of schizophrenia was implemented using independent component analysis (ICA) to identify multiple temporally cohesive, spatially distributed regions of brain activity that represent functionally connected networks. We hypothesized that functional connectivity differences would be seen in auditory networks comprised of regions such as superior temporal gyrus as well as executive networks that consisted of frontal-parietal areas. Eight networks were found to be implicated in schizophrenia during the auditory oddball paradigm. These included a bilateral temporal network containing the superior and middle temporal gyrus; a default-mode network comprised of the posterior cingulate, precuneus, and middle frontal gyrus; and multiple dorsal lateral prefrontal cortex networks that constituted various levels of between-group differences. Highly task-related sensory networks were also found. These results indicate that patients with schizophrenia show functional connectivity differences in networks related to auditory processing, executive control, and baseline functional activity. Overall, these findings support the idea that the cognitive deficits associated with schizophrenia are widespread and that a functional connectivity approach can help elucidate the neural correlates of this disorder.


Assuntos
Córtex Auditivo/fisiopatologia , Lobo Frontal/fisiopatologia , Imageamento por Ressonância Magnética , Lobo Parietal/fisiopatologia , Esquizofrenia/diagnóstico , Esquizofrenia/fisiopatologia , Lobo Temporal/fisiopatologia , Adolescente , Adulto , Idoso , Córtex Cerebral/fisiopatologia , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos , Esquizofrenia/complicações , Tálamo/fisiopatologia , Adulto Jovem
13.
Schizophr Bull ; 35(1): 19-31, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19042912

RESUMO

BACKGROUND: The Functional Imaging Biomedical Informatics Network is a consortium developing methods for multisite functional imaging studies. Both prefrontal hyper- or hypoactivity in chronic schizophrenia have been found in previous studies of working memory. METHODS: In this functional magnetic resonance imaging (fMRI) study of working memory, 128 subjects with chronic schizophrenia and 128 age- and gender-matched controls were recruited from 10 universities around the United States. Subjects performed the Sternberg Item Recognition Paradigm1,2 with memory loads of 1, 3, or 5 items. A region of interest analysis examined the mean BOLD signal change in an atlas-based demarcation of the dorsolateral prefrontal cortex (DLPFC), in both groups, during both the encoding and retrieval phases of the experiment over the various memory loads. RESULTS: Subjects with schizophrenia performed slightly but significantly worse than the healthy volunteers and showed a greater decrease in accuracy and increase in reaction time with increasing memory load. The mean BOLD signal in the DLPFC was significantly greater in the schizophrenic group than the healthy group, particularly in the intermediate load condition. A secondary analysis matched subjects for mean accuracy and found the same BOLD signal hyperresponse in schizophrenics. CONCLUSIONS: The increase in BOLD signal change from minimal to moderate memory loads was greater in the schizophrenic subjects than in controls. This effect remained when age, gender, run, hemisphere, and performance were considered, consistent with inefficient DLPFC function during working memory. These findings from a large multisite sample support the concept not of hyper- or hypofrontality in schizophrenia, but rather DLPFC inefficiency that may be manifested in either direction depending on task demands. This redirects the focus of research from direction of difference to neural mechanisms of inefficiency.


Assuntos
Imageamento por Ressonância Magnética , Memória de Curto Prazo , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/diagnóstico , Esquizofrenia/fisiopatologia , Adolescente , Adulto , Idoso , Doença Crônica , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Transtornos da Memória/diagnóstico , Transtornos da Memória/etiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Esquizofrenia/complicações , Índice de Gravidade de Doença , Adulto Jovem
14.
AJNR Am J Neuroradiol ; 40(8): 1274-1281, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31345942

RESUMO

BACKGROUND AND PURPOSE: The clinical implications of gadolinium deposition in the CNS are not fully understood, and it is still not known whether gadolinium tends to be retained more in the brain compared with the spinal cord. In this study, we assessed the effects of linear gadolinium-based contrast agents on the T1 signal intensity of 3 cerebral areas (dentate nucleus, globus pallidus, and the less studied substantia nigra) and the cervical spinal cord in a population of patients with MS. MATERIALS AND METHODS: A single-center population of 100 patients with MS was analyzed. Patients underwent 2-16 contrast-enhanced MRIs. Fifty patients received ≤5 linear gadolinium injections, and 50 patients had ≥6 injections: Fifty-two patients had both Gd-DTPA and gadobenate dimeglumine injections, and 48 patients received only gadobenate dimeglumine. A quantitative analysis of signal intensity changes was independently performed by 2 readers on the first and last MR imaging scan. The globus pallidus-to-thalamus, substantia nigra-to-midbrain, dentate nucleus-to-middle cerebellar peduncle, and the cervical spinal cord-to-pons signal intensity ratios were calculated. RESULTS: An increase of globus pallidus-to-thalamus (mean, +0.0251 ± 0.0432; P < .001), dentate nucleus-to-middle cerebellar peduncle (mean, +0.0266 ± 0.0841; P = .002), and substantia nigra-to-midbrain (mean, +0.0262 ± 0.0673; P < .001) signal intensity ratios after multiple administrations of linear gadolinium-based contrast agents was observed. These changes were significantly higher in patients who received ≥6 injections (P < .001) and positively correlated with the number of injections and the accumulated dose of contrast. No significant changes were detected in the spinal cord (mean, +0.0008 ± 0.0089; P = .400). CONCLUSIONS: Patients with MS receiving ≥6 linear gadolinium-based contrast agent injections showed a significant increase in the signal intensity of the globus pallidus, dentate nucleus, and substantia nigra; no detectable changes were observed in the cervical spinal cord.


Assuntos
Encéfalo/diagnóstico por imagem , Medula Cervical/diagnóstico por imagem , Meios de Contraste/farmacologia , Gadolínio DTPA/farmacologia , Esclerose Múltipla/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
15.
IEEE Trans Med Imaging ; 27(1): 129-41, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18270068

RESUMO

This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor) of these deformations, as is common, we retain the full deformation tensors and apply a manifold version of Hotelling's $T(2) test to them, in a Log-Euclidean domain. In 2-D and 3-D magnetic resonance imaging (MRI) data from 26 HIV/AIDS patients and 14 matched healthy subjects, we compared multivariate tensor analysis versus univariate tests of simpler tensor-derived indices: the Jacobian determinant, the trace, geodesic anisotropy, and eigenvalues of the deformation tensor, and the angle of rotation of its eigenvectors. We detected consistent, but more extensive patterns of structural abnormalities, with multivariate tests on the full tensor manifold. Their improved power was established by analyzing cumulative p-value plots using false discovery rate (FDR) methods, appropriately controlling for false positives. This increased detection sensitivity may empower drug trials and large-scale studies of disease that use tensor-based morphometry.


Assuntos
Algoritmos , Encéfalo/patologia , Encefalite Viral/patologia , Infecções por HIV/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Imageamento por Ressonância Magnética/métodos , Síndrome da Imunodeficiência Adquirida/patologia , Adulto , Simulação por Computador , Interpretação Estatística de Dados , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Modelos Neurológicos , Modelos Estatísticos , Análise Multivariada , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Nat Neurosci ; 4(12): 1253-8, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11694885

RESUMO

Here we report on detailed three-dimensional maps revealing how brain structure is influenced by individual genetic differences. A genetic continuum was detected in which brain structure was increasingly similar in subjects with increasing genetic affinity. Genetic factors significantly influenced cortical structure in Broca's and Wernicke's language areas, as well as frontal brain regions (r2(MZ) > 0.8, p < 0.05). Preliminary correlations were performed suggesting that frontal gray matter differences may be linked to Spearman's g, which measures successful test performance across multiple cognitive domains (p < 0.05). These genetic brain maps reveal how genes determine individual differences, and may shed light on the heritability of cognitive and linguistic skills, as well as genetic liability for diseases that affect the human cortex.


Assuntos
Padronização Corporal/genética , Mapeamento Encefálico , Córtex Cerebral/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Inteligência/genética , Estudos em Gêmeos como Assunto , Gêmeos/genética , Adulto , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Cognição/fisiologia , Metabolismo Energético/genética , Feminino , Lateralidade Funcional/genética , Humanos , Processamento de Imagem Assistida por Computador , Idioma , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Comportamento Verbal/fisiologia
17.
Trends Genet ; 11(2): 51-8, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7716807

RESUMO

Modern studies of the genetic control of development have increased the need for an accurate and comprehensive storage and display of gene expression data. This can be achieved in the form of an electronic graphic database of development. Here, we introduce the first steps towards a database of Drosophila embryogenesis. For each morphologically defined stage, a complete series of histological and/or optical sections are generated (optical sections are generated by laser confocal microscopy). Digitized sections are imported into a drawing program where they serve as templates to define the contours of organs and the position of individual cells. From these data, surface and point cloud models of all developmental stages are generated. Gene expression data can be entered by translating the expression domain of a given gene into the three-dimensional coordinate system of the database.


Assuntos
Gráficos por Computador , Bases de Dados Factuais , Drosophila/embriologia , Modelos Anatômicos , Conversão Análogo-Digital , Animais , Drosophila/genética , Embrião não Mamífero/ultraestrutura , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Morfogênese
20.
AJNR Am J Neuroradiol ; 38(3): 537-545, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28007768

RESUMO

BACKGROUND AND PURPOSE: Precision medicine is an approach to disease diagnosis, treatment, and prevention that relies on quantitative biomarkers that minimize the variability of individual patient measurements. The aim of this study was to assess the intersite variability after harmonization of a high-angular-resolution 3T diffusion tensor imaging protocol across 13 scanners at the 11 academic medical centers participating in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury multisite study. MATERIALS AND METHODS: Diffusion MR imaging was acquired from a novel isotropic diffusion phantom developed at the National Institute of Standards and Technology and from the brain of a traveling volunteer on thirteen 3T MR imaging scanners representing 3 major vendors (GE Healthcare, Philips Healthcare, and Siemens). Means of the DTI parameters and their coefficients of variation across scanners were calculated for each DTI metric and white matter tract. RESULTS: For the National Institute of Standards and Technology diffusion phantom, the coefficients of variation of the apparent diffusion coefficient across the 13 scanners was <3.8% for a range of diffusivities from 0.4 to 1.1 × 10-6 mm2/s. For the volunteer, the coefficients of variations across scanners of the 4 primary DTI metrics, each averaged over the entire white matter skeleton, were all <5%. In individual white matter tracts, large central pathways showed good reproducibility with the coefficients of variation consistently below 5%. However, smaller tracts showed more variability, with the coefficients of variation of some DTI metrics reaching 10%. CONCLUSIONS: The results suggest the feasibility of standardizing DTI across 3T scanners from different MR imaging vendors in a large-scale neuroimaging research study.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/normas , Neuroimagem/normas , Imagem de Tensor de Difusão/métodos , Humanos , Neuroimagem/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Voluntários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA