Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(5): 3992-3998, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32352798

RESUMO

Engineering 2D/3D perovskite interfaces is a common route to realizing efficient and stable perovskite solar cells. Whereas 2D perovskite's main function in trap passivation has been identified and is confirmed here, little is known about its 2D/3D interface properties under thermal stress, despite being one of the main factors that induces device instability. In this work, we monitor the response of two typical 2D/3D interfaces under a thermal cycle by in situ X-ray scattering. We reveal that upon heating, the 2D crystalline structure undergoes a dynamical transformation into a mixed 2D/3D phase, keeping the 3D bulk underneath intact. The observed 3D bulk degradation into lead iodide is blocked, revealing the paramount role of 2D perovskite in engineering stable device interfaces.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35311272

RESUMO

Impedimetric wearable sensors are a promising strategy for determining the loss of water content (LWC) from leaves because they can afford on-site and nondestructive quantification of cellular water from a single measurement. Because the water content is a key marker of leaf health, monitoring of the LWC can lend key insights into daily practice in precision agriculture, toxicity studies, and the development of agricultural inputs. Ongoing challenges with this monitoring are the on-leaf adhesion, compatibility, scalability, and reproducibility of the electrodes, especially when subjected to long-term measurements. This paper introduces a set of sensing material, technological, and data processing solutions that overwhelm such obstacles. Mass-production-suitable electrodes consisting of stand-alone Ni films obtained by well-established microfabrication methods or ecofriendly pyrolyzed paper enabled reproducible determination of the LWC from soy leaves with optimized sensibilities of 27.0 (Ni) and 17.5 kΩ %-1 (paper). The freestanding design of the Ni electrodes was further key to delivering high on-leaf adhesion and long-term compatibility. Their impedances remained unchanged under the action of wind at velocities of up to 2.00 m s-1, whereas X-ray nanoprobe fluorescence assays allowed us to confirm the Ni sensor compatibility by the monitoring of the soy leaf health in an electrode-exposed area. Both electrodes operated through direct transfer of the conductive materials on hairy soy leaves using an ordinary adhesive tape. We used a hand-held and low-power potentiostat with wireless connection to a smartphone to determine the LWC over 24 h. Impressively, a machine-learning model was able to convert the sensing responses into a simple mathematical equation that gauged the impairments on the water content at two temperatures (30 and 20 °C) with reduced root-mean-square errors (0.1% up to 0.3%). These data suggest broad applicability of the platform by enabling direct determination of the LWC from leaves even at variable temperatures. Overall, our findings may help to pave the way for translating "sense-act" technologies into practice toward the on-site and remote investigation of plant drought stress. These platforms can provide key information for aiding efficient data-driven management and guiding decision-making steps.

3.
Sci Rep ; 11(1): 23671, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880305

RESUMO

Shedding synchrotron light on microfluidic systems, exploring several contrasts in situ/operando at the nanoscale, like X-ray fluorescence, diffraction, luminescence, and absorption, has the potential to reveal new properties and functionalities of materials across diverse areas, such as green energy, photonics, and nanomedicine. In this work, we present the micro-fabrication and characterization of a multifunctional polyester/glass sealed microfluidic device well-suited to combine with analytical X-ray techniques. The device consists of smooth microchannels patterned on glass, where three gold electrodes are deposited into the channels to serve in situ electrochemistry analysis or standard electrical measurements. It has been efficiently sealed through an ultraviolet-sensitive sticker-like layer based on a polyester film, and The burst pressure determined by pumping water through the microchannel(up to 0.22 MPa). Overall, the device has demonstrated exquisite chemical resistance to organic solvents, and its efficiency in the presence of biological samples (proteins) is remarkable. The device potentialities, and its high transparency to X-rays, have been demonstrated by taking advantage of the X-ray nanoprobe Carnaúba/Sirius/LNLS, by obtaining 2D X-ray nanofluorescence maps on the microchannel filled with water and after an electrochemical nucleation reaction. To wrap up, the microfluidic device characterized here has the potential to be employed in standard laboratory experiments as well as in in situ and in vivo analytical experiments using a wide electromagnetic window, from infrared to X-rays, which could serve experiments in many branches of science.

4.
J Synchrotron Radiat ; 17(1): 93-102, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20029117

RESUMO

An energy-dispersive X-ray absorption spectroscopy beamline mainly dedicated to X-ray magnetic circular dichroism (XMCD) and material science under extreme conditions has been implemented in a bending-magnet port at the Brazilian Synchrotron Light Laboratory. Here the beamline technical characteristics are described, including the most important aspects of the mechanics, optical elements and detection set-up. The beamline performance is then illustrated through two case studies on strongly correlated transition metal oxides: an XMCD insight into the modifications of the magnetic properties of Cr-doped manganites and the structural deformation in nickel perovskites under high applied pressure.


Assuntos
Metais/química , Óxidos/química , Síncrotrons , Espectroscopia por Absorção de Raios X/métodos , Argentina , Transferência de Energia , Estatística como Assunto
5.
J Phys Chem Lett ; 11(6): 2079-2085, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32090576

RESUMO

The photoluminescence (PL), color purity, and stability of lead halide perovskite nanocrystals depend critically on surface passivation. We present a study on the temperature-dependent PL and PL decay dynamics of lead bromide perovskite nanocrystals characterized by different types of A cations, surface ligands, and nanocrystal sizes. Throughout, we observe a single emission peak from cryogenic to ambient temperature. The PL decay dynamics are dominated by surface passivation, and a postsynthesis ligand exchange with a quaternary ammonium bromide (QAB) results in more stable passivation over a larger temperature range. The PL intensity is highest from 50 to 250 K, which indicates that ligand binding competes with the thermal energy at ambient temperature. Despite the favorable PL dynamics of nanocrystals passivated with QAB ligands (monoexponential PL decay over a large temperature range, increased PL intensity and stability), surface passivation still needs to be improved to achieve maximum emission intensity in nanocrystal films.

6.
Nanoscale ; 7(4): 1437-45, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25504082

RESUMO

Ultradense macroscopic arrays of ferromagnetic alloy nanowires exhibit unique properties that make them attractive both for basic physics studies and for prospective nanodevice applications in various areas. We report here on the production of self-organized equiatomic FePt nanowires produced by glancing-angle ion-beam codeposition on alumina nanoripple patterns at room temperature and subsequent annealing at 600 °C. This study demonstrates that periodically aligned FePt nanowires with tunable size (∼10-20 nm width and ∼0.5-10 nm height) can be successfully grown as a consequence of shadowing effects and low mobility of Fe and Pt on the rippled alumina surface. Moreover, the structure and magnetic properties of the FePt nanowires, which undergo a phase transition from a disordered A1 (soft) structure to a partially ordered L10 (hard) structure, can be modified upon annealing. We show that this behavior can be further exploited to change the effective uniaxial anisotropy of the system, which is determined by a strong interplay between the shape and magnetocrystalline anisotropies of the nanowires.

7.
J Phys Condens Matter ; 27(8): 085001, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25604708

RESUMO

The structure and strain of ultrathin CoO films grown on a Pt(0 0 1) substrate and on a ferromagnetic FePt pseudomorphic layer on Pt(0 0 1) have been determined with in situ and real time surface x-ray diffraction. The films grow epitaxially on both surfaces with an in-plane hexagonal pattern that yields a pseudo-cubic CoO(1 1 1) surface. A refined x-ray diffraction analysis reveals a slight monoclinic distortion at RT induced by the anisotropic stress at the interface. The tetragonal contribution to the distortion results in a ratio [Formula: see text], opposite to that found in the low temperature bulk CoO phase. This distortion leads to a stable Co(2+) spin configuration within the plane of the film.

8.
J Synchrotron Radiat ; 12(Pt 2): 168-76, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15728969

RESUMO

The remarkable polarization properties of synchrotron light have lead to the advent of modern synchrotron-related spectroscopic studies with angular and/or magnetic selectivity. Here an overview is given of the prominent aspects of the polarization of the light delivered by a bending magnet, and some dichroic properties in X-ray absorption spectroscopy (XAS). Two studies developed at the Brazilian Synchrotron Light Laboratory are then reported, exemplifying the profit gained using linear and circular polarization of X-rays for the study of magnetic thin films and multilayers. Angle-resolved XAS was used in strained manganite thin films to certify a model of local distortion limited within the MnO6 polyhedron. A pioneering experience of X-ray magnetic scattering at grazing incidence associated with dispersive XAS in a Co/Gd multilayer draws new perspectives for magnetic studies in thin films and multilayers under atmospheric conditions in the hard X-ray range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA