Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2215071120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623192

RESUMO

CAG trinucleotide repeat expansions cause several neurodegenerative diseases, including Huntington's disease and spinocerebellar ataxia. RNAs with expanded CAG repeats contribute to disease in two unusual ways. First, these repeat-containing RNAs may agglomerate in the nucleus as foci that sequester several RNA-binding proteins. Second, these RNAs may undergo aberrant repeat-associated non-AUG (RAN) translation in multiple frames and produce aggregation-prone proteins. The relationship between RAN translation and RNA foci, and their relative contributions to cellular dysfunction, are unclear. Here, we show that CAG repeat-containing RNAs that undergo RAN translation first accumulate at nuclear foci and, over time, are exported to the cytoplasm. In the cytoplasm, these RNAs are initially dispersed but, upon RAN translation, aggregate with the RAN translation products. These RNA-RAN protein agglomerates sequester various RNA-binding proteins and are associated with the disruption of nucleocytoplasmic transport and cell death. In contrast, RNA accumulation at nuclear foci alone does not produce discernable defects in nucleocytoplasmic transport or cell viability. Inhibition of RAN translation prevents cytoplasmic RNA aggregation and alleviates cell toxicity. Our findings demonstrate that RAN translation-induced RNA-protein aggregation correlates with the key pathological hallmarks observed in disease and suggest that cytoplasmic RNA aggregation may be an underappreciated phenomenon in CAG trinucleotide repeat expansion disorders.


Assuntos
Doença de Huntington , Ataxias Espinocerebelares , Humanos , RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Ataxias Espinocerebelares/genética , Doença de Huntington/genética
2.
Proc Natl Acad Sci U S A ; 116(18): 8895-8900, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31004062

RESUMO

Alzheimer's disease (AD) is characterized by the deposition of ß-sheet-rich, insoluble amyloid ß-peptide (Aß) plaques; however, plaque burden is not correlated with cognitive impairment in AD patients; instead, it is correlated with the presence of toxic soluble oligomers. Here, we show, by a variety of different techniques, that these Aß oligomers adopt a nonstandard secondary structure, termed "α-sheet." These oligomers form in the lag phase of aggregation, when Aß-associated cytotoxicity peaks, en route to forming nontoxic ß-sheet fibrils. De novo-designed α-sheet peptides specifically and tightly bind the toxic oligomers over monomeric and fibrillar forms of Aß, leading to inhibition of aggregation in vitro and neurotoxicity in neuroblastoma cells. Based on this specific binding, a soluble oligomer-binding assay (SOBA) was developed as an indirect probe of α-sheet content. Combined SOBA and toxicity experiments demonstrate a strong correlation between α-sheet content and toxicity. The designed α-sheet peptides are also active in vivo where they inhibit Aß-induced paralysis in a transgenic Aß Caenorhabditis elegans model and specifically target and clear soluble, toxic oligomers in a transgenic APPsw mouse model. The α-sheet hypothesis has profound implications for further understanding the mechanism behind AD pathogenesis.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Estrutura Secundária de Proteína , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos , Encéfalo/metabolismo , Encéfalo/patologia , Caenorhabditis elegans , Humanos , Immunoblotting , Camundongos , Agregados Proteicos , Agregação Patológica de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA