Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
2.
Mol Biol Cell ; 33(5): br8, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35274979

RESUMO

During cell cycle progression in metazoans, the kinetochore is assembled at mitotic onset and disassembled during mitotic exit. Once assembled, the kinetochore complex attached to centromeres interacts directly with the spindle microtubules, the vehicle of chromosome segregation. This reassembly program is assumed to be absent in budding and fission yeast, because most kinetochore proteins are stably maintained at the centromeres throughout the entire cell cycle. Here, we show that the reassembly program of the outer kinetochore at mitotic onset is unexpectedly conserved in the fission yeast Schizosaccharomyces pombe. We identified this behavior by removing the Rabl chromosome configuration, in which centromeres are permanently associated with the nuclear envelope beneath the spindle pole body during interphase. In addition to having evolutionary implications for kinetochore reassembly, our results aid the understanding of the molecular processes responsible for kinetochore disassembly and assembly during mitotic entry.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Segregação de Cromossomos , Cinetocoros/metabolismo , Mitose , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático/metabolismo
3.
Front Microbiol ; 12: 773092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867910

RESUMO

Phytopathogenic fungal growth in postharvest fruits and vegetables is responsible for 20-25% of production losses. Volatile organic compounds (VOCs) have been gaining importance in the food industry as a safe and ecofriendly alternative to pesticides for combating these phytopathogenic fungi. In this study, we analysed the ability of some VOCs produced by strains of the genera Bacillus, Peribacillus, Pseudomonas, Psychrobacillus and Staphylococcus to inhibit the growth of Alternaria alternata, Botrytis cinerea, Fusarium oxysporum, Fusarium solani, Monilinia fructicola, Monilinia laxa and Sclerotinia sclerotiorum, in vitro and in vivo. We analysed bacterial VOCs by using GC/MS and 87 volatile compounds were identified, in particular acetoin, acetic acid, 2,3-butanediol, isopentanol, dimethyl disulphide and isopentyl isobutanoate. In vitro growth inhibition assays and in vivo experiments using cherry fruits showed that the best producers of VOCs, Bacillus atrophaeus L193, Bacillus velezensis XT1 and Psychrobacillus vulpis Z8, exhibited the highest antifungal activity against B. cinerea, M. fructicola and M. laxa, which highlights the potential of these strains to control postharvest diseases. Transmission electron microscopy micrographs of bacterial VOC-treated fungi clearly showed antifungal activity which led to an intense degeneration of cellular components of mycelium and cell death.

4.
Microorganisms ; 8(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635146

RESUMO

This study aims to evaluate the use of Bacillus velezensis strain XT1 as a plant growth-promoting rhizobacterium (PGPR) and biocontrol agent against B. cinerea in tomato and strawberry plants. Foliar and radicular applications of strain XT1 increased plant total biomass as compared to the control and B. cinerea-infected plants, with root applications being, on the whole, the most effective mode of treatment. Applications of the bacterium were found to reduce infection parameters such as disease incidence and severity by 50% and 60%, respectively. We analyzed stress parameters and phytohormone content in order to evaluate the capacity of XT1 to activate the defense system through phytohormonal regulation. Overall, the application of XT1 reduced oxidative damage, while the H2O2 and malondialdehyde (MDA) content was lower in XT1-treated and B. cinerea-infected plants as compared to non-XT1-treated plants. Moreover, treatment with XT1 induced callose deposition, thus boosting the response to pathogenic infection. The results of this study suggest that the signaling and activation pathways involved in defense mechanisms are mediated by jasmonic acid (JA) and ethylene hormones, which are induced by preventive treatment with XT1. The study also highlights the potential of preventive applications of strain XT1 to activate defense mechanisms in strawberry and tomato plants through hormone regulation.

5.
Microorganisms ; 8(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316222

RESUMO

Increase in soil salinity poses an enormous problem for agriculture and highlights the need for sustainable crop production solutions. Plant growth-promoting bacteria can be used to boost the growth of halophytes in saline soils. Salicornia is considered to be a promising salt-accumulating halophyte for capturing large amounts of carbon from the atmosphere. In addition, colonization and chemotaxis could play an important role in Salicornia-microbe interactions. In this study, the role of chemotaxis in the colonization of the halophilic siredophore-producing bacteria, Halomonas anticariensis FP35T, on Salicornia hispanica plants was investigated. The chemotactic response of FP35T to Salicornia root exudates showed optimum dependence at a salt concentration of 5 % NaCl (w/v). Oleanolic acid, the predominant compound in the exudates detected by HPLC and identified by UPLC-HRMS Q-TOF, acts as a chemoattractant. In vitro experiments demonstrated the enhanced positive effects of wild-type H. anticariensis strain FP35T on root length, shoot length, germination and the vigour index of S. hispanica. Furthermore, these positive effects partially depend on an active chemotaxis system, as the chemotaxis mutant H. anticariensis FP35 ΔcheA showed reduced plant growth promotion for all the parameters tested. Overall, our results suggest that chemotaxis responses to root exudates play an important role in interactions between Salicornia and halophilic bacteria, enhance their colonization and boost plant growth promotion. Preliminary results also indicate that root exudates have a positive impact on H. anticariensis FP35T biofilm formation under saline conditions, an effect which totally depends on the presence of the cheA gene.

6.
Front Microbiol ; 9: 1315, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997581

RESUMO

This work aims to explore the capacity of a Bacillus methylotrophicus (later heterotypic synonym of Bacillus velezensis) strain named XT1 CECT 8661 against the necrotrophic plant pathogen Botrytis cinerea and to identify the compounds responsible for its activity. Q_TOF electrospray mass spectrometry analysis allows us to detect several lipopeptides - surfactin, bacillomycin, and fengycin - in XT1 cultures. In vitro antibiosis studies demonstrated the efficiency of the lipopeptide fraction for the inhibition of fungal growth. In fact, microscopy studies (SEM/TEM) revealed, an alteration of the morphology of the phytopathogen in interaction with lipopeptides, with resistance structures appearing in the early stages of growth of the fungus. Our studies, carried out with tomatoes, grapes, and strawberries have demonstrated the efficiency of Bacillus XT1 CECT 8661 lipopeptides against B. cinerea infection and it capability to trigger the antioxidant activity in fruit. Overall, the results of this study highlight the potential of lipopeptides of this strain as an effective biological control agent against the colonisation of B. cinerea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA