Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Immunol ; 42(3): 559-571, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35000057

RESUMO

PURPOSE: X-linked inhibitor of apoptosis protein (XIAP) deficiency, also known as the X-linked lymphoproliferative syndrome of type 2 (XLP-2), is a rare immunodeficiency characterized by recurrent hemophagocytic lymphohistiocytosis, splenomegaly, and inflammatory bowel disease. Variants in XIAP including missense, non-sense, frameshift, and deletions of coding exons have been reported to cause XIAP deficiency. We studied three young boys with immunodeficiency displaying XLP-2-like clinical features. No genetic variation in the coding exons of XIAP was identified by whole-exome sequencing (WES), although the patients exhibited a complete loss of XIAP expression. METHODS: Targeted next-generation sequencing (NGS) of the entire locus of XIAP was performed on DNA samples from the three patients. Molecular investigations were assessed by gene reporter expression assays in HEK cells and CRISPR-Cas9 genome editing in primary T cells. RESULTS: NGS of XIAP identified three distinct non-coding deletions in the patients that were predicted to be driven by repetitive DNA sequences. These deletions share a common region of 839 bp that encompassed the first non-coding exon of XIAP and contained regulatory elements and marks specific of an active promoter. Moreover, we showed that among the 839 bp, the exon was transcriptionally active. Finally, deletion of the exon by CRISPR-Cas9 in primary cells reduced XIAP protein expression. CONCLUSIONS: These results identify a key promoter sequence contained in the first non-coding exon of XIAP. Importantly, this study highlights that sequencing of the non-coding exons that are not currently captured by WES should be considered in the genetic diagnosis when no variation is found in coding exons.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Transtornos Linfoproliferativos , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Células Germinativas/metabolismo , Humanos , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/metabolismo , Masculino , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X
2.
Mol Biol Evol ; 37(12): 3453-3468, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32658962

RESUMO

Transmission distorters (TDs) are genetic elements that favor their own transmission to the detriments of others. Slx/Slxl1 (Sycp3-like-X-linked and Slx-like1) and Sly (Sycp3-like-Y-linked) are TDs, which have been coamplified on the X and Y chromosomes of Mus species. They are involved in an intragenomic conflict in which each favors its own transmission, resulting in sex ratio distortion of the progeny when Slx/Slxl1 versus Sly copy number is unbalanced. They are specifically expressed in male postmeiotic gametes (spermatids) and have opposite effects on gene expression: Sly knockdown leads to the upregulation of hundreds of spermatid-expressed genes, whereas Slx/Slxl1-deficiency downregulates them. When both Slx/Slxl1 and Sly are knocked down, sex ratio distortion and gene deregulation are corrected. Slx/Slxl1 and Sly are, therefore, in competition but the molecular mechanism remains unknown. By comparing their chromatin-binding profiles and protein partners, we show that SLX/SLXL1 and SLY proteins compete for interaction with H3K4me3-reader SSTY1 (Spermiogenesis-specific-transcript-on-the-Y1) at the promoter of thousands of genes to drive their expression, and that the opposite effect they have on gene expression is mediated by different abilities to recruit SMRT/N-Cor transcriptional complex. Their target genes are predominantly spermatid-specific multicopy genes encoded by the sex chromosomes and the autosomal Speer/Takusan. Many of them have coamplified with not only Slx/Slxl1/Sly but also Ssty during muroid rodent evolution. Overall, we identify Ssty as a key element of the X versus Y intragenomic conflict, which may have influenced gene content and hybrid sterility beyond Mus lineage since Ssty amplification on the Y predated that of Slx/Slxl1/Sly.


Assuntos
Evolução Biológica , Proteínas Nucleares/genética , Proteínas/genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Quinases/genética , Proteínas/metabolismo , Espermátides/metabolismo , Sítio de Iniciação de Transcrição
3.
Am J Hum Genet ; 101(5): 803-814, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100091

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute a major cause of chronic kidney disease in children and 20% of prenatally detected anomalies. CAKUT encompass a spectrum of developmental kidney defects, including renal agenesis, hypoplasia, and cystic and non-cystic dysplasia. More than 50 genes have been reported as mutated in CAKUT-affected case subjects. However, the pathophysiological mechanisms leading to bilateral kidney agenesis (BKA) remain largely elusive. Whole-exome or targeted exome sequencing of 183 unrelated familial and/or severe CAKUT-affected case subjects, including 54 fetuses with BKA, led to the identification of 16 heterozygous variants in GREB1L (growth regulation by estrogen in breast cancer 1-like), a gene reported as a target of retinoic acid signaling. Four loss-of-function and 12 damaging missense variants, 14 being absent from GnomAD, were identified. Twelve of them were present in familial or simplex BKA-affected case subjects. Female BKA-affected fetuses also displayed uterus agenesis. We demonstrated a significant association between GREB1L variants and BKA. By in situ hybridization, we showed expression of Greb1l in the nephrogenic zone in developing mouse kidney. We generated a Greb1l knock-out mouse model by CRISPR-Cas9. Analysis at E13.5 revealed lack of kidneys and genital tract anomalies in male and female Greb1l-/- embryos and a slight decrease in ureteric bud branching in Greb1l+/- embryos. We showed that Greb1l invalidation in mIMCD3 cells affected tubulomorphogenesis in 3D-collagen culture, a phenotype rescued by expression of the wild-type human protein. This demonstrates that GREB1L plays a major role in early metanephros and genital development in mice and humans.


Assuntos
Anormalidades Congênitas/genética , Nefropatias/congênito , Rim/anormalidades , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Animais , Criança , Exoma/genética , Feminino , Feto/anormalidades , Heterozigoto , Humanos , Nefropatias/genética , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/genética
4.
J Clin Immunol ; 38(5): 617-627, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995221

RESUMO

PURPOSE: Inborn errors of IFN-γ immunity underlie Mendelian susceptibility to mycobacterial disease (MSMD). Autosomal recessive complete IL-12Rß1 deficiency is the most frequent genetic etiology of MSMD. Only two of the 84 known mutations are copy number variations (CNVs), identified in two of the 213 IL-12Rß1-deficient patients and two of the 164 kindreds reported. These two CNVs are large deletions found in the heterozygous or homozygous state. We searched for novel families with IL-12Rß1 deficiency due to CNVs. METHODS: We studied six MSMD patients from five unrelated kindreds displaying adverse reactions to BCG vaccination. Three of the patients also presented systemic salmonellosis, two had mucocutaneous candidiasis, and one had disseminated histoplasmosis. We searched for CNVs and other variations by IL12RB1-targeted next-generation sequencing (NGS). RESULTS: We identified six new IL-12Rß1-deficient patients with a complete loss of IL-12Rß1 expression on phytohemagglutinin-activated T cells and/or EBV-transformed B cells. The cells of these patients did not respond to IL-12 and IL-23. Five different CNVs encompassing IL12RB1 (four deletions and one duplication) were identified in these patients by NGS coverage analysis, either in the homozygous state (n = 1) or in trans (n = 4) with a single-nucleotide variation (n = 3) or a small indel (n = 1). Seven of the nine mutations are novel. Interestingly, four of the five CNVs were predicted to be driven by nearby Alu elements, as well as the two previously reported large deletions. The IL12RB1 locus is actually enriched in Alu elements (44.7%), when compared with the rest of the genome (10.5%). CONCLUSION: The IL12RB1 locus is Alu-enriched and therefore prone to rearrangements at various positions. CNVs should be considered in the genetic diagnosis of IL-12Rß1 deficiency.


Assuntos
Elementos Alu , Variações do Número de Cópias de DNA , Estudos de Associação Genética , Predisposição Genética para Doença , Subunidade beta 1 de Receptor de Interleucina-12/deficiência , Alelos , Sequência de Bases , Mapeamento Cromossômico , Feminino , Expressão Gênica , Humanos , Interferon gama , Masculino , Mutação , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/etiologia , Infecções por Mycobacterium/metabolismo , Linhagem , Fenótipo
5.
J Med Genet ; 54(5): 324-329, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28069933

RESUMO

BACKGROUND: While mitochondrial DNA (mtDNA) copy number is strictly regulated during differentiation and according to cell type, very little is known regarding the mechanism which accurately controls mtDNA copy number in human. Exon 2 of the human POLG gene, encoding the catalytic subunit of the mitochondrial-specific DNA polymerase gamma, contains a CpG island, highly conserved in mice and human. Changes of DNA methylation at the POLG locus have been shown to modulate mtDNA copy number during cell differentiation in both mouse and human. METHODS: We have investigated the epigenetic modification of the POLG gene, by assessing the methylation level of its exon 2 using deep-Next Generation Sequencing analysis of bisulfite-treated DNA. Analysis were performed on various tissues at either postnatal or prenatal stages, on samples from carriers of mtDNA mutations, patients carrying two loss-of-function POLG mutations and controls. RESULTS: Very high methylation levels at POLG exon 2 were found (94±3%) and no variation was observed according to either developmental stage or tissue of origin, except for sperm samples for which lower methylation levels were found (80%). This high level of methylation was neither correlated with the presence of mtDNA mutations (94±1% of methylated alleles), nor with biallelic POLG mutations (93%±2%), even in tissues where a mtDNA depletion had been observed. CONCLUSIONS: This study suggests that, at variance with mouse and un/de-differentiated human cells, differentiated human cells control mtDNA levels irrespective of POLG methylation. The factors which actually control the mtDNA levels in such cell types remain to be identified.


Assuntos
Diferenciação Celular/genética , Ilhas de CpG/genética , Metilação de DNA/genética , DNA Polimerase gama/genética , DNA Mitocondrial/genética , Éxons/genética , Mutação/genética , Adolescente , Adulto , Animais , Sequência de Bases , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Camundongos , Pessoa de Meia-Idade , Gravidez , Adulto Jovem
6.
J Am Soc Nephrol ; 28(10): 2901-2914, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28566479

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) occur in three to six of 1000 live births, represent about 20% of the prenatally detected anomalies, and constitute the main cause of CKD in children. These disorders are phenotypically and genetically heterogeneous. Monogenic causes of CAKUT in humans and mice have been identified. However, despite high-throughput sequencing studies, the cause of the disease remains unknown in most patients, and several studies support more complex inheritance and the role of environmental factors and/or epigenetics in the pathophysiology of CAKUT. Here, we report the targeted exome sequencing of 330 genes, including genes known to be involved in CAKUT and candidate genes, in a cohort of 204 unrelated patients with CAKUT; 45% of the patients were severe fetal cases. We identified pathogenic mutations in 36 of 204 (17.6%) patients. These mutations included five de novo heterozygous loss of function mutations/deletions in the PBX homeobox 1 gene (PBX1), a gene known to have a crucial role in kidney development. In contrast, the frequency of SOX17 and DSTYK variants recently reported as pathogenic in CAKUT did not indicate causality. These findings suggest that PBX1 is involved in monogenic CAKUT in humans and call into question the role of some gene variants recently reported as pathogenic in CAKUT. Targeted exome sequencing also proved to be an efficient and cost-effective strategy to identify pathogenic mutations and deletions in known CAKUT genes.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Proto-Oncogênicas/genética , Anormalidades Urogenitais/genética , Estudos de Coortes , Análise Mutacional de DNA , Exoma , Feminino , Humanos , Masculino , Fator de Transcrição 1 de Leucemia de Células Pré-B
7.
Am J Hum Genet ; 94(2): 288-94, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24439109

RESUMO

Renal hypodysplasia (RHD) is a heterogeneous condition encompassing a spectrum of kidney development defects including renal agenesis, hypoplasia, and (cystic) dysplasia. Heterozygous mutations of several genes have been identified as genetic causes of RHD with various severity. However, these genes and mutations are not associated with bilateral renal agenesis, except for RET mutations, which could be involved in a few cases. The pathophysiological mechanisms leading to total absence of kidney development thus remain largely elusive. By using a whole-exome sequencing approach in families with several fetuses with bilateral renal agenesis, we identified recessive mutations in the integrin α8-encoding gene ITGA8 in two families. Itga8 homozygous knockout in mice is known to result in absence of kidney development. We provide evidence of a damaging effect of the human ITGA8 mutations. These results demonstrate that mutations of ITGA8 are a genetic cause of bilateral renal agenesis and that, at least in some cases, bilateral renal agenesis is an autosomal-recessive disease.


Assuntos
Anormalidades Congênitas/genética , Genes Recessivos , Cadeias alfa de Integrinas/genética , Nefropatias/congênito , Rim/anormalidades , Anormalidades Urogenitais/genética , Anormalidades Congênitas/patologia , Feminino , Feto/anormalidades , Homozigoto , Humanos , Cadeias alfa de Integrinas/metabolismo , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Masculino , Mutação , Linhagem , Anormalidades Urogenitais/patologia
8.
Gut ; 65(6): 1024-34, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-25792709

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC) is the most prevalent primary tumour of the liver. About a third of these tumours presents activating mutations of the ß-catenin gene. The molecular pathogenesis of HCC has been elucidated, but mortality remains high, and new therapeutic approaches, including treatments based on microRNAs, are required. We aimed to identify candidate microRNAs, regulated by ß-catenin, potentially involved in liver tumorigenesis. DESIGN: We used a mouse model, in which ß-catenin signalling was overactivated exclusively in the liver by the tamoxifen-inducible and Cre-Lox-mediated inactivation of the Apc gene. This model develops tumours with properties similar to human HCC. RESULTS: We found that miR-34a was regulated by ß-catenin, and significantly induced by the overactivation of ß-catenin signalling in mouse tumours and in patients with HCC. An inhibitor of miR-34a (locked nucleic acid, LNA-34a) exerted antiproliferative activity in primary cultures of hepatocyte. This inhibition of proliferation was associated with a decrease in cyclin D1 levels, orchestrated principally by HNF-4α, a target of miR-34a considered to act as a tumour suppressor in the liver. In vivo, LNA-34a approximately halved progression rates for tumours displaying ß-catenin activation together with an activation of caspases 2 and 3. CONCLUSIONS: This work demonstrates the key oncogenic role of miR-34a in liver tumours with ß-catenin gene mutations. We suggest that patients diagnosed with HCC with ß-catenin mutations could be treated with an inhibitor of miR-34a. The potential value of this strategy lies in the modulation of the tumour suppressor HNF-4α, which targets cyclin D1, and the induction of a proapoptotic programme.


Assuntos
Ciclina D1/genética , Neoplasias Hepáticas Experimentais/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Mutação , beta Catenina/genética , Animais , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas Experimentais/terapia , Camundongos
9.
Am J Hum Genet ; 93(6): 1118-25, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24268655

RESUMO

Auriculocondylar syndrome (ACS) is a rare craniofacial disorder with mandibular hypoplasia and question-mark ears (QMEs) as major features. QMEs, consisting of a specific defect at the lobe-helix junction, can also occur as an isolated anomaly. Studies in animal models have indicated the essential role of endothelin 1 (EDN1) signaling through the endothelin receptor type A (EDNRA) in patterning the mandibular portion of the first pharyngeal arch. Mutations in the genes coding for phospholipase C, beta 4 (PLCB4) and guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 3 (GNAI3), predicted to function as signal transducers downstream of EDNRA, have recently been reported in ACS. By whole-exome sequencing (WES), we identified a homozygous substitution in a furin cleavage site of the EDN1 proprotein in ACS-affected siblings born to consanguineous parents. WES of two cases with vertical transmission of isolated QMEs revealed a stop mutation in EDN1 in one family and a missense substitution of a highly conserved residue in the mature EDN1 peptide in the other. Targeted sequencing of EDN1 in an ACS individual with related parents identified a fourth, homozygous mutation falling close to the site of cleavage by endothelin-converting enzyme. The different modes of inheritance suggest that the degree of residual EDN1 activity differs depending on the mutation. These findings provide further support for the hypothesis that ACS and QMEs are uniquely caused by disruption of the EDN1-EDNRA signaling pathway.


Assuntos
Otopatias/genética , Orelha/anormalidades , Genes Dominantes , Genes Recessivos , Mutação , Fenótipo , Sequência de Aminoácidos , Substituição de Aminoácidos , Análise Mutacional de DNA , Otopatias/diagnóstico , Otopatias/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Feminino , Genótipo , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Alinhamento de Sequência , Transdução de Sinais
10.
iScience ; 26(7): 107171, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456840

RESUMO

The human genome comprises approximately 3% of tandem repeats with variable length (VNTR), a few of which have been linked to human rare diseases. Autosomal dominant tubulointerstitial kidney disease-MUC1 (ADTKD-MUC1) is caused by specific frameshift variants in the coding VNTR of the MUC1 gene. Calling variants from VNTR using short-read sequencing (SRS) is challenging due to poor read mappability. We developed a computational pipeline, VNtyper, for reliable detection of MUC1 VNTR pathogenic variants and demonstrated its clinical utility in two distinct cohorts: (1) a historical cohort including 108 families with ADTKD and (2) a replication naive cohort comprising 2,910 patients previously tested on a panel of genes involved in monogenic renal diseases. In the historical cohort all cases known to carry pathogenic MUC1 variants were re-identified, and a new 25bp-frameshift insertion in an additional mislaid family was detected. In the replication cohort, we discovered and validated 30 new patients.

11.
J Med Genet ; 48(7): 497-504, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21490379

RESUMO

BACKGROUND: The RET/GDNF signalling pathway plays a crucial role during development of the kidneys and the enteric nervous system. In humans, RET activating mutations cause multiple endocrine neoplasia, whereas inactivating mutations are responsible for Hirschsprung disease. RET mutations have also been reported in fetuses with renal agenesis, based on analysis of a small series of samples. OBJECTIVE AND METHODS: To characterise better the involvement of RET and GDNF in kidney development defects, a series of 105 fetuses with bilateral defects, including renal agenesis, severe hypodysplasia or multicystic dysplastic kidney, was studied. RET and GDNF coding sequences, evolutionary conserved non-coding regions (ECRs) in promoters, 3'UTRs, and RET intron 1 were analysed. Copy number variations at these loci were also investigated. RESULTS: The study identified: (1) a low frequency (<7%) of potential mutations in the RET coding sequence, with inheritance from the healthy father for four of them; (2) no GDNF mutation; (3) similar allele frequencies in patients and controls for most single nucleotide polymorphism variants, except for RET intron 1 variant rs2506012 that was significantly more frequent in affected fetuses than in controls (6% vs 2%, p=0.01); (4) distribution of the few rare RET variants unidentified in controls into the various 5'-ECRs; (5) absence of copy number variations. CONCLUSION: These results suggest that genomic alteration of RET or GDNF is not a major mechanism leading to renal agenesis and other severe kidney development defects. Analysis of a larger series of patients will be necessary to validate the association of the RET intron 1 variant rs2506012 with renal development defects.


Assuntos
Anormalidades Congênitas/genética , Feto/anormalidades , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Nefropatias/congênito , Nefropatias/genética , Mutação/genética , Proteínas Proto-Oncogênicas c-ret/genética , Alelos , Variações do Número de Cópias de DNA , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Rim/anormalidades , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética
12.
Nat Commun ; 13(1): 3507, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717442

RESUMO

Gephyrin (GPHN) regulates the clustering of postsynaptic components at inhibitory synapses and is involved in pathophysiology of neuropsychiatric disorders. Here, we uncover an extensive diversity of GPHN transcripts that are tightly controlled by splicing during mouse and human brain development. Proteomic analysis reveals at least a hundred isoforms of GPHN incorporated at inhibitory Glycine and gamma-aminobutyric acid A receptors containing synapses. They exhibit different localization and postsynaptic clustering properties, and altering the expression level of one isoform is sufficient to affect the number, size, and density of inhibitory synapses in cerebellar Purkinje cells. Furthermore, we discovered that splicing defects reported in neuropsychiatric disorders are carried by multiple alternative GPHN transcripts, demonstrating the need for a thorough analysis of the GPHN transcriptome in patients. Overall, we show that alternative splicing of GPHN is an important genetic variation to consider in neurological diseases and a determinant of the diversity of postsynaptic inhibitory synapses.


Assuntos
Proteínas de Transporte , Proteômica , Proteínas de Transporte/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/genética , Sinapses/metabolismo
13.
Nat Commun ; 12(1): 5044, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413298

RESUMO

Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.


Assuntos
Mutação , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/genética , Ribossomos/patologia , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/patologia , Adolescente , Adulto , Animais , Fenômenos Biológicos , Células Cultivadas , Criança , Pré-Escolar , Dictyostelium , Drosophila , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Células Germinativas , Humanos , Lactente , Simulação de Dinâmica Molecular , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Proteínas/genética , Proteínas/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Síndrome de Shwachman-Diamond/metabolismo , Adulto Jovem
14.
Hum Mol Genet ; 17(16): 2541-51, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18492799

RESUMO

Autism spectrum disorders (ASDs) are common, heritable, but genetically heterogeneous neurodevelopmental conditions. We recently defined a susceptibility locus for ASDs on chromosome 1q41-q42. High-resolution single-nucleotide polymorphisms (126 SNPs) genotyping across the chromosome 1q41-q42 region, followed by a MARK1 (microtubule affinity-regulating kinase 1)-tagged-SNP association study in 276 families with autism from the Autism Genetic Research Exchange, showed that several SNPs within the MARK1 gene were significantly associated with ASDs by transmission disequilibrium tests. Haplotype rs12740310*C-rs3737296*G-rs12410279*A was overtransmitted (P(corrected)= 0.0016), with a relative risk for autism of 1.8 in homozygous carriers. Furthermore, ASD-associated SNP rs12410279 modulates the level of transcription of MARK1. We found that MARK1 was overexpressed in the prefrontal cortex (BA46) but not in cerebellar granule cells, on postmortem brain tissues from patients. MARK1 displayed an accelerated evolution along the lineage leading to humans, suggesting possible involvement of this gene in cognition. MARK1 encodes a kinase-regulating microtubule-dependent transport in axons and dendrites. Both overexpression and silencing of MARK1 resulted in significantly shorter dendrite length in mouse neocortical neurons and modified dendritic transport speed. As expected for a gene encoding a key polarity determinant Par-1 protein kinase, MARK1 is involved in axon-dendrite specification. Thus, MARK1 overexpression in humans may be responsible for subtle changes in dendritic functioning.


Assuntos
Transtorno Autístico/enzimologia , Predisposição Genética para Doença , Proteínas Serina-Treonina Quinases/metabolismo , Adolescente , Adulto , Animais , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Linhagem Celular Tumoral , Polaridade Celular , Córtex Cerebelar/enzimologia , Córtex Cerebelar/fisiopatologia , Criança , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 1/genética , Dendritos/química , Dendritos/enzimologia , Dendritos/fisiologia , Evolução Molecular , Feminino , Expressão Gênica , Haplótipos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico
15.
Stat Med ; 29(22): 2359-68, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20623818

RESUMO

Diagnostic accuracy of a genetic test involving multiple disease genes is evaluated using sensitivity and specificity. For estimation, data from both affected and unaffected subjects are required. For early onset diseases, such as autism spectrum disorder (ASD), only data from families with affected offspring are available. To enable estimation of specificity when no data for unaffected offspring are available (single affected offspring, SAO, data), we combine the pseudocontrol method of Cordell and Clayton (Am. J. Hum. Genet. 2002; 70:124-141) with the approach of DeLong et al. (Biometrics 1985; 41:947-958) in a logistic regression model for disease outcome with a risk score (RS) constructed from genotype information as prognostic variable. The area under the receiver operating characteristic curve (AUC) is then computed using the non-parametric Mann-Whitney method. Extensive simulation studies show that, analogous to other approaches utilizing pseudocontrols, the resulting estimates of AUC using SAO data are slightly conservative when compared with the estimates computed using the full population-based data. The method is illustrated using data from a study of ASD.


Assuntos
Interpretação Estatística de Dados , Testes Genéticos/métodos , Modelos Logísticos , Modelos Genéticos , Adulto , Área Sob a Curva , Transtornos Globais do Desenvolvimento Infantil/genética , Pré-Escolar , Simulação por Computador , Família , Feminino , Humanos , Masculino , Curva ROC
16.
BMC Genet ; 10: 16, 2009 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-19331686

RESUMO

BACKGROUND: The monogenic disease osteogenesis imperfecta (OI) is due to single mutations in either of the collagen genes ColA1 or ColA2, but within the same family a given mutation is accompanied by a wide range of disease severity. Although this phenotypic variability implies the existence of modifier gene variants, genome wide scanning of DNA from OI patients has not been reported. Promising genome wide marker-independent physical methods for identifying disease-related loci have lacked robustness for widespread applicability. Therefore we sought to improve these methods and demonstrate their performance to identify known and novel loci relevant to OI. RESULTS: We have improved methods for enriching regions of identity-by-descent (IBD) shared between related, afflicted individuals. The extent of enrichment exceeds 10- to 50-fold for some loci. The efficiency of the new process is shown by confirmation of the identification of the Col1A2 locus in osteogenesis imperfecta patients from Amish families. Moreover the analysis revealed additional candidate linkage loci that may harbour modifier genes for OI; a locus on chromosome 1q includes COX-2, a gene implicated in osteogenesis. CONCLUSION: Technology for physical enrichment of IBD loci is now robust and applicable for finding genes for monogenic diseases and genes for complex diseases. The data support the further investigation of genetic loci other than collagen gene loci to identify genes affecting the clinical expression of osteogenesis imperfecta. The discrimination of IBD mapping will be enhanced when the IBD enrichment procedure is coupled with deep resequencing.


Assuntos
Mapeamento Cromossômico/métodos , Colágeno/genética , Análise Mutacional de DNA/métodos , Osteogênese Imperfeita/genética , Fenótipo , Colágeno Tipo I , Marcadores Genéticos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem
17.
Cell Discov ; 4: 61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455981

RESUMO

A loss-of-function mutation in tetratricopeptide repeat domain 7A (TTC7A) is a recently identified cause of human intestinal and immune disorders. However, clues to related underlying molecular dysfunctions remain elusive. It is now shown based on the study of TTC7A-deficient and wild-type cells that TTC7A is an essential nuclear protein. It binds to chromatin, preferentially at actively transcribed regions. Its depletion results in broad range of epigenomic changes at proximal and distal transcriptional regulatory elements and in altered control of the transcriptional program. Loss of WT_TTC7A induces general decrease in chromatin compaction, unbalanced cellular distribution of histones, higher nucleosome accessibility to nuclease digestion along with genome instability, and reduced cell viability. Our observations characterize for the first time unreported functions for TTC7A in the nucleus that exert a critical role in chromatin organization and gene regulation to safeguard healthy immune and intestinal status.

18.
EMBO Mol Med ; 10(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30446499

RESUMO

The genetic causes of congenital hypothyroidism due to thyroid dysgenesis (TD) remain largely unknown. We identified three novel TUBB1 gene mutations that co-segregated with TD in three distinct families leading to 1.1% of TUBB1 mutations in TD study cohort. TUBB1 (Tubulin, Beta 1 Class VI) encodes for a member of the ß-tubulin protein family. TUBB1 gene is expressed in the developing and adult thyroid in humans and mice. All three TUBB1 mutations lead to non-functional α/ß-tubulin dimers that cannot be incorporated into microtubules. In mice, Tubb1 knock-out disrupted microtubule integrity by preventing ß1-tubulin incorporation and impaired thyroid migration and thyroid hormone secretion. In addition, TUBB1 mutations caused the formation of macroplatelets and hyperaggregation of human platelets after stimulation by low doses of agonists. Our data highlight unexpected roles for ß1-tubulin in thyroid development and in platelet physiology. Finally, these findings expand the spectrum of the rare paediatric diseases related to mutations in tubulin-coding genes and provide new insights into the genetic background and mechanisms involved in congenital hypothyroidism and thyroid dysgenesis.


Assuntos
Plaquetas/citologia , Plaquetas/patologia , Mutação , Agregação Plaquetária , Disgenesia da Tireoide/genética , Tubulina (Proteína)/genética , Animais , Humanos , Camundongos , Camundongos Knockout , Disgenesia da Tireoide/patologia
19.
BMC Med Genet ; 8: 74, 2007 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-18053270

RESUMO

BACKGROUND: Autism is a complex, heterogeneous, behaviorally-defined disorder characterized by disruptions of the nervous system and of other systems such as the pituitary-hypothalamic axis. In a previous genome wide screen, we reported linkage of autism with a 1.2 Megabase interval on chromosome 5q31. For the current study, we hypothesized that 3 of the genes in this region could be involved in the development of autism: 1) paired-like homeodomain transcription factor 1 (PITX1), which is a key regulator of hormones within the pituitary-hypothalamic axis, 2) neurogenin 1, a transcription factor involved in neurogenesis, and 3) histone family member Y (H2AFY), which is involved in X-chromosome inactivation in females and could explain the 4:1 male:female gender distortion present in autism. METHODS: A total of 276 families from the Autism Genetic Resource Exchange (AGRE) repository composed of 1086 individuals including 530 affected children were included in the study. Single nucleotide polymorphisms tagging the three candidate genes were genotyped on the initial linkage sample of 116 families. A second step of analysis was performed using tightly linked SNPs covering the PITX1 gene. Association was evaluated using the FBAT software version 1.7.3 for single SNP analysis and the HBAT command from the same package for haplotype analysis respectively. RESULTS: Association between SNPs and autism was only detected for PITX1. Haplotype analysis within PITX1 showed evidence for overtransmission of the A-C haplotype of markers rs11959298 - rs6596189 (p = 0.0004). Individuals homozygous or heterozygous for the A-C haplotype risk allele were 2.54 and 1.59 fold more likely to be autistic than individuals who were not carrying the allele, respectively. CONCLUSION: Strong and consistent association was observed between a 2 SNPs within PITX1 and autism. Our data suggest that PITX1, a key regulator of hormones within the pituitary-hypothalamic axis, may be implicated in the etiology of autism.


Assuntos
Transtorno Autístico/genética , Cromossomos Humanos Par 5/genética , Fatores de Transcrição Box Pareados/genética , Polimorfismo de Nucleotídeo Único , Transtorno Autístico/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Casos e Controles , Criança , Análise Mutacional de DNA , Feminino , Frequência do Gene , Genes Homeobox/genética , Ligação Genética/genética , Marcadores Genéticos , Predisposição Genética para Doença , Haplótipos/genética , Histonas/genética , Humanos , Masculino , Herança Multifatorial/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Box Pareados/metabolismo , Mutação Puntual/genética , Distribuição por Sexo , Irmãos
20.
Cell Death Differ ; 24(6): 1029-1044, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28475176

RESUMO

Sperm differentiation requires unique transcriptional regulation and chromatin remodeling after meiosis to ensure proper compaction and protection of the paternal genome. Abnormal sperm chromatin remodeling can induce sperm DNA damage, embryo lethality and male infertility, yet, little is known about the factors which regulate this process. Deficiency in Sly, a mouse Y chromosome-encoded gene expressed only in postmeiotic male germ cells, has been shown to result in the deregulation of hundreds of sex chromosome-encoded genes associated with multiple sperm differentiation defects and subsequent male infertility. The underlying mechanism remained, to date, unknown. Here, we show that SLY binds to the promoter of sex chromosome-encoded and autosomal genes highly expressed postmeiotically and involved in chromatin regulation. Specifically, we demonstrate that Sly knockdown directly induces the deregulation of sex chromosome-encoded H2A variants and of the H3K79 methyltransferase DOT1L. The modifications prompted by loss of Sly alter the postmeiotic chromatin structure and ultimately result in abnormal sperm chromatin remodeling with negative consequences on the sperm genome integrity. Altogether our results show that SLY is a regulator of sperm chromatin remodeling. Finally we identified that SMRT/N-CoR repressor complex is involved in gene regulation during sperm differentiation since members of this complex, in particular TBL1XR1, interact with SLY in postmeiotic male germ cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Cromossomos Sexuais/metabolismo , Espermatozoides/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Cromossomos Sexuais/genética , Espermatogênese , Espermatozoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA