Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(18): 182701, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196226

RESUMO

The cascading 3.21 and 4.44 MeV electric quadrupole transitions have been observed from the Hoyle state at 7.65 MeV excitation energy in ^{12}C, excited by the ^{12}C(p,p^{'}) reaction at 10.7 MeV proton energy. From the proton-γ-γ triple coincidence data, a value of Γ_{rad}/Γ=6.2(6)×10^{-4} was obtained for the radiative branching ratio. Using our results, together with Γ_{π}^{E0}/Γ from Eriksen et al. [Phys. Rev. C 102, 024320 (2020)PRVCAN2469-998510.1103/PhysRevC.102.024320] and the currently adopted Γ_{π}(E0) values, the radiative width of the Hoyle state is determined as Γ_{rad}=5.1(6)×10^{-3} eV. This value is about 34% higher than the currently adopted value and will impact models of stellar evolution and nucleosynthesis.

2.
Phys Rev Lett ; 116(1): 012502, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26799014

RESUMO

We analyze primary γ-ray spectra of the odd-odd (238)Np nucleus extracted from (237)Np(d,pγ)(238)Np coincidence data measured at the Oslo Cyclotron Laboratory. The primary γ spectra cover an excitation-energy region of 0≤E(I)≤5.4 MeV, and allow us to perform a detailed study of the γ-ray strength as a function of excitation energy. Hence, we can test the validity of the generalized Brink-Axel hypothesis, which, in its strictest form, claims no excitation-energy dependence on the γ strength. In this work, using the available high-quality (238)Np data, we show that the γ-ray strength function is to a very large extent independent of the initial and final states. Thus, for the first time, the generalized Brink-Axel hypothesis is experimentally verified for γ transitions between states in the quasicontinuum region, not only for specific collective resonances, but also for the full strength below the neutron separation energy. Based on our findings, the necessary criteria for the generalized Brink-Axel hypothesis to be fulfilled are outlined.

3.
Phys Rev Lett ; 116(4): 042501, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26871324

RESUMO

Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV (J^{π}=1^{+}, T=1) state→ground state (J^{π}=0^{+}, T=0) and the isoscalar magnetic dipole 18.15 MeV (J^{π}=1^{+}, T=0) state→ground state transitions in ^{8}Be. Significant enhancement relative to the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of >5σ. This observation could possibly be due to nuclear reaction interference effects or might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of 16.70±0.35(stat)±0.5(syst) MeV/c^{2} and J^{π}=1^{+} was created.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA