Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(7): 1706-1723.e24, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33761327

RESUMO

The recently enriched genomic history of Indigenous groups in the Americas is still meager concerning continental Central America. Here, we report ten pre-Hispanic (plus two early colonial) genomes and 84 genome-wide profiles from seven groups presently living in Panama. Our analyses reveal that pre-Hispanic demographic events contributed to the extensive genetic structure currently seen in the area, which is also characterized by a distinctive Isthmo-Colombian Indigenous component. This component drives these populations on a specific variability axis and derives from the local admixture of different ancestries of northern North American origin(s). Two of these ancestries were differentially associated to Pleistocene Indigenous groups that also moved into South America, leaving heterogenous genetic footprints. An additional Pleistocene ancestry was brought by a still unsampled population of the Isthmus (UPopI) that remained restricted to the Isthmian area, expanded locally during the early Holocene, and left genomic traces up to the present day.


Assuntos
Indígena Americano ou Nativo do Alasca/genética , Arqueologia , Genômica/métodos , Indígena Americano ou Nativo do Alasca/classificação , DNA Mitocondrial/genética , Variação Genética , Genoma Humano , Haplótipos , Humanos , Filogenia
2.
Mol Biol Evol ; 39(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35617136

RESUMO

The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here, we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51 kya, into the Americas, from where a relatively recent (<20 kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r. transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (YD) (11.7 kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife.


Assuntos
Genoma Mitocondrial , Andorinhas , África , Animais , Ásia , Feminino , Humanos , Filogeografia , Andorinhas/genética
3.
Genomics ; 114(4): 110405, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35709925

RESUMO

Southern Italy was characterised by a complex prehistory that started with different Palaeolithic cultures, later followed by the Neolithization and the demic dispersal from the Pontic-Caspian Steppe during the Bronze Age. Archaeological and historical evidences point to a link between Southern Italians and the Balkans still present in modern times. To shed light on these dynamics, we analysed around 700 South Mediterranean genomes combined with informative ancient DNAs. Our findings revealed high affinities of South-Eastern Italians with modern Eastern Peloponnesians, and a closer affinity of ancient Greek genomes with those from specific regions of South Italy than modern Greek genomes. The higher similarity could be associated with a Bronze Age component ultimately originating from the Caucasus with high Iranian and Anatolian Neolithic ancestries. Furthermore, extremely differentiated allele frequencies among Northern and Southern Italy revealed putatively adapted SNPs in genes involved in alcohol metabolism, nevi features and immunological traits.


Assuntos
DNA Antigo , Genoma Humano , Arqueologia , Humanos , Irã (Geográfico) , Itália
4.
Nature ; 536(7617): 419-24, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27459054

RESUMO

We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter-gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a 'Basal Eurasian' lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter-gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter-gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.


Assuntos
Agricultura/história , Genômica , Migração Humana/história , Filogenia , Grupos Raciais/genética , África Oriental , Animais , Armênia , Ásia , DNA/análise , Europa (Continente) , História Antiga , Humanos , Hibridização Genética/genética , Irã (Geográfico) , Israel , Jordânia , Homem de Neandertal/genética , Filogeografia , Turquia
5.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743173

RESUMO

The high number of matching haplotypes of the most common mitochondrial (mt)DNA lineages are considered to be the greatest limitation for forensic applications. This study investigates the potential to solve this constraint by massively parallel sequencing a large number of mitogenomes that share the most common West Eurasian mtDNA control region (CR) haplotype motif (263G 315.1C 16519C). We augmented a pilot study on 29 to a total of 216 Italian mitogenomes that represents the largest set of the most common CR haplotype compiled from a single country. The extended population sample confirmed and extended the huge coding region diversity behind the most common CR motif. Complete mitogenome sequencing allowed for the detection of 163 distinct haplotypes, raising the power of discrimination from 0 (CR) to 99.6% (mitogenome). The mtDNAs were clustered into 61 named clades of haplogroup H and did not reveal phylogeographic trends within Italy. Rapid individualization approaches for investigative purposes are limited to the most frequent H clades of the dataset, viz. H1, H3, and H7.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , DNA Mitocondrial/genética , Genética Populacional , Haplótipos/genética , Núcleo Familiar , Projetos Piloto , Análise de Sequência de DNA
6.
Genome Res ; 28(6): 767-779, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735605

RESUMO

Genetic and archaeological data indicate that the initial Paleoindian settlers of South America followed two entry routes separated by the Andes and the Amazon rainforest. The interactions between these paths and their impact on the peopling of South America remain unclear. Analysis of genetic variation in the Peruvian Andes and regions located south of the Amazon River might provide clues on this issue. We analyzed mitochondrial DNA variation at different Andean locations and >360,000 autosomal SNPs from 28 Native American ethnic groups to evaluate different trans-Andean demographic scenarios. Our data reveal that the Peruvian Altiplano was an important enclave for early Paleoindian expansions and point to a genetic continuity in the Andes until recent times, which was only marginally affected by gene flow from the Amazonian lowlands. Genomic variation shows a good fit with the archaeological evidence, indicating that the genetic interactions between the descendants of the settlers that followed the Pacific and Atlantic routes were extremely limited.


Assuntos
DNA Mitocondrial/genética , Fluxo Gênico/genética , Genética Populacional , Arqueologia , Cromossomos Humanos Y/genética , Etnicidade/genética , Variação Genética , Haplótipos , Humanos , Mitocôndrias/genética , Polimorfismo de Nucleotídeo Único/genética , América do Sul
7.
PLoS Genet ; 14(2): e1007210, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29444077

RESUMO

We here report on the existence of Leber's hereditary optic neuropathy (LHON) associated with peculiar combinations of individually non-pathogenic missense mitochondrial DNA (mtDNA) variants, affecting the MT-ND4, MT-ND4L and MT-ND6 subunit genes of Complex I. The pathogenic potential of these mtDNA haplotypes is supported by multiple evidences: first, the LHON phenotype is strictly inherited along the maternal line in one very large family; second, the combinations of mtDNA variants are unique to the two maternal lineages that are characterized by recurrence of LHON; third, the Complex I-dependent respiratory and oxidative phosphorylation defect is co-transferred from the proband's fibroblasts into the cybrid cell model. Finally, all but one of these missense mtDNA variants cluster along the same predicted fourth E-channel deputed to proton translocation within the transmembrane domain of Complex I, involving the ND1, ND4L and ND6 subunits. Hence, the definition of the pathogenic role of a specific mtDNA mutation becomes blurrier than ever and only an accurate evaluation of mitogenome sequence variation data from the general population, combined with functional analyses using the cybrid cell model, may lead to final validation. Our study conclusively shows that even in the absence of a clearly established LHON primary mutation, unprecedented combinations of missense mtDNA variants, individually known as polymorphisms, may lead to reduced OXPHOS efficiency sufficient to trigger LHON. In this context, we introduce a new diagnostic perspective that implies the complete sequence analysis of mitogenomes in LHON as mandatory gold standard diagnostic approach.


Assuntos
DNA Mitocondrial/genética , Herança Multifatorial , Mutação de Sentido Incorreto , Atrofia Óptica Hereditária de Leber/genética , Penetrância , Adulto , Sequência de Aminoácidos , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Epistasia Genética , Família , Feminino , Genes Mitocondriais , Humanos , Masculino , Modelos Moleculares , NADH Desidrogenase/química , NADH Desidrogenase/genética , Linhagem , Adulto Jovem
8.
BMC Biol ; 17(1): 3, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30674303

RESUMO

BACKGROUND: Recent genome studies of modern and ancient samples have proposed that Native Americans derive from a subset of the Eurasian gene pool carried to America by an ancestral Beringian population, from which two well-differentiated components originated and subsequently mixed in different proportion during their spread in the Americas. To assess the timing, places of origin and extent of admixture between these components, we performed an analysis of the Y-chromosome haplogroup Q, which is the only Pan-American haplogroup and accounts for virtually all Native American Y chromosomes in Mesoamerica and South America. RESULTS: Our analyses of 1.5 Mb of 152 Y chromosomes, 34 re-sequenced in this work, support a "coastal and inland routes scenario" for the first entrance of modern humans in North America. We show a major phase of male population growth in the Americas after 15 thousand years ago (kya), followed by a period of constant population size from 8 to 3 kya, after which a secondary sign of growth was registered. The estimated dates of the first expansion in Mesoamerica and the Isthmo-Colombian Area, mainly revealed by haplogroup Q-Z780, suggest an entrance in South America prior to 15 kya. During the global constant population size phase, local South American hints of growth were registered by different Q-M848 sub-clades. These expansion events, which started during the Holocene with the improvement of climatic conditions, can be ascribed to multiple cultural changes rather than a steady population growth and a single cohesive culture diffusion as it occurred in Europe. CONCLUSIONS: We established and dated a detailed haplogroup Q phylogeny that provides new insights into the geographic distribution of its Eurasian and American branches in modern and ancient samples.


Assuntos
Cromossomos Humanos Y , Variação Genética , Haplótipos , Indígenas Norte-Americanos/genética , Polimorfismo de Nucleotídeo Único , População Branca/genética , América , Europa (Continente) , Genética Populacional , Humanos , Filogenia
9.
Mol Biol Evol ; 35(2): 299-311, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29099937

RESUMO

Recent and compelling archaeological evidence attests to human presence ∼14.5 ka at multiple sites in South America and a very early exploitation of extreme high-altitude Andean environments. Considering that, according to genetic evidence, human entry into North America from Beringia most likely occurred ∼16 ka, these archeological findings would imply an extremely rapid spread along the double continent. To shed light on this issue from a genetic perspective, we first completely sequenced 217 novel modern mitogenomes of Native American ancestry from the northwestern area of South America (Ecuador and Peru); we then evaluated them phylogenetically together with other available mitogenomes (430 samples, both modern and ancient) from the same geographic area and, finally, with all closely related mitogenomes from the entire double continent. We detected a large number (N = 48) of novel subhaplogroups, often branching into further subclades, belonging to two classes: those that arose in South America early after its peopling and those that instead originated in North or Central America and reached South America with the first settlers. Coalescence age estimates for these subhaplogroups provide time boundaries indicating that early Paleo-Indians probably moved from North America to the area corresponding to modern Ecuador and Peru over the short time frame of ∼1.5 ka comprised between 16.0 and 14.6 ka.


Assuntos
Genoma Mitocondrial , Migração Humana , Indígenas Sul-Americanos/genética , Humanos , Filogenia , Filogeografia
10.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744094

RESUMO

Many anthropological, linguistic, genetic and genomic analyses have been carried out to evaluate the potential impact that evolutionary forces had in shaping the present-day Sardinian gene pool, the main outlier in the genetic landscape of Europe. However, due to the homogenizing effect of internal movements, which have intensified over the past fifty years, only partial information has been obtained about the main demographic events. To overcome this limitation, we analyzed the male-specific region of the Y chromosome in three population samples obtained by reallocating a large number of Sardinian subjects to the place of origin of their monophyletic surnames, which are paternally transmitted through generations in most of the populations, much like the Y chromosome. Three Y-chromosome founding lineages, G2-L91, I2-M26 and R1b-V88, were identified as strongly contributing to the definition of the outlying position of Sardinians in the European genetic context and marking a significant differentiation within the island. The present distribution of these lineages does not always mirror that detected in ancient DNAs. Our results show that the analysis of the Y-chromosome gene pool coupled with a sampling method based on the origin of the family name, is an efficient approach to unravelling past heterogeneity, often hidden by recent movements, in the gene pool of modern populations. Furthermore, the reconstruction and comparison of past genetic isolates represent a starting point to better assess the genetic information deriving from the increasing number of available ancient DNA samples.


Assuntos
Cromossomos Humanos Y/genética , Genética Populacional , Cromossomos Humanos Y/classificação , DNA Antigo/análise , Frequência do Gene , Ligação Genética , Haplótipos , Humanos , Ilhas , Itália , Masculino , Filogenia , Análise de Componente Principal , População Branca/genética
11.
Neurobiol Dis ; 114: 129-139, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29486301

RESUMO

There is growing evidence that the sequence variation of mitochondrial DNA (mtDNA), which clusters in population- and/or geographic-specific haplogroups, may result in functional effects that, in turn, become relevant in disease predisposition or protection, interaction with environmental factors and ultimately in modulating longevity. To unravel functional differences between mtDNA haplogroups we here employed transmitochondrial cytoplasmic hybrid cells (cybrids) grown in galactose medium, a culture condition that forces oxidative phosphorylation, and in the presence of rotenone, the classic inhibitor of respiratory Complex I. Under this experimental paradigm we assessed functional parameters such as cell viability and respiration, ATP synthesis, reactive oxygen species production and mtDNA copy number. Our analyses show that haplogroup J1, which is common in western Eurasian populations, is the most sensitive to rotenone, whereas K1 mitogenomes orchestrate the best compensation, possibly because of the haplogroup-specific missense variants impinging on Complex I function. Remarkably, haplogroups J1 and K1 fit the genetic associations previously established with Leber's hereditary optic neuropathy (LHON) for J1, as a penetrance enhancer, and with Parkinson's disease (PD) for K1, as a protective background. Our findings provide functional evidences supporting previous well-established genetic associations of specific haplogroups with two neurodegenerative pathologies, LHON and PD. Our experimental paradigm is instrumental to highlighting the subtle functional differences characterizing mtDNA haplogroups, which will be increasingly needed to dissect the role of mtDNA genetic variation in health, disease and longevity.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Haplótipos/genética , Doença de Parkinson Secundária/genética , Praguicidas/toxicidade , Rotenona/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , DNA Mitocondrial/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Genoma Mitocondrial/efeitos dos fármacos , Haplótipos/efeitos dos fármacos , Humanos , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Doença de Parkinson Secundária/induzido quimicamente , Filogenia , Estrutura Secundária de Proteína
12.
Mol Biol Evol ; 34(5): 1230-1239, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28177087

RESUMO

Sardinians are "outliers" in the European genetic landscape and, according to paleogenomic nuclear data, the closest to early European Neolithic farmers. To learn more about their genetic ancestry, we analyzed 3,491 modern and 21 ancient mitogenomes from Sardinia. We observed that 78.4% of modern mitogenomes cluster into 89 haplogroups that most likely arose in situ. For each Sardinian-specific haplogroup (SSH), we also identified the upstream node in the phylogeny, from which non-Sardinian mitogenomes radiate. This provided minimum and maximum time estimates for the presence of each SSH on the island. In agreement with demographic evidence, almost all SSHs coalesce in the post-Nuragic, Nuragic and Neolithic-Copper Age periods. For some rare SSHs, however, we could not dismiss the possibility that they might have been on the island prior to the Neolithic, a scenario that would be in agreement with archeological evidence of a Mesolithic occupation of Sardinia.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , DNA Antigo/análise , Demografia , Etnicidade/genética , Evolução Molecular , Variação Genética/genética , Genética Populacional/métodos , Haplótipos/genética , Humanos , Ilhas , Itália/etnologia , Filogenia , Análise de Sequência de DNA/métodos , População Branca/genética
13.
Ann Hum Biol ; 45(1): 44-56, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29382284

RESUMO

BACKGROUND: Due to its central and strategic position in Europe and in the Mediterranean Basin, the Italian Peninsula played a pivotal role in the first peopling of the European continent and has been a crossroad of peoples and cultures since then. AIM: This study aims to gain more information on the genetic structure of modern Italian populations and to shed light on the migration/expansion events that led to their formation. SUBJECTS AND METHODS: High resolution Y-chromosome variation analysis in 817 unrelated males from 10 informative areas of Italy was performed. Haplogroup frequencies and microsatellite haplotypes were used, together with available data from the literature, to evaluate Mediterranean and European inputs and date their arrivals. RESULTS: Fifty-three distinct Y-chromosome lineages were identified. Their distribution is in general agreement with geography, southern populations being more differentiated than northern ones. CONCLUSIONS: A complex genetic structure reflecting the multifaceted peopling pattern of the Peninsula emerged: southern populations show high similarity with those from the Middle East and Southern Balkans, while those from Northern Italy are close to populations of North-Western Europe and the Northern Balkans. Interestingly, the population of Volterra, an ancient town of Etruscan origin in Tuscany, displays a unique Y-chromosomal genetic structure.


Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Variação Genética , Haplótipos , Repetições de Microssatélites , Humanos , Itália , Masculino
14.
Proc Biol Sci ; 284(1851)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28330913

RESUMO

Important gaps remain in our understanding of the spread of farming into Europe, due partly to apparent contradictions between studies of contemporary genetic variation and ancient DNA. It seems clear that farming was introduced into central, northern, and eastern Europe from the south by pioneer colonization. It is often argued that these dispersals originated in the Near East, where the potential source genetic pool resembles that of the early European farmers, but clear ancient DNA evidence from Mediterranean Europe is lacking, and there are suggestions that Mediterranean Europe may have resembled the Near East more than the rest of Europe in the Mesolithic. Here, we test this proposal by dating mitogenome founder lineages from the Near East in different regions of Europe. We find that whereas the lineages date mainly to the Neolithic in central Europe and Iberia, they largely date to the Late Glacial period in central/eastern Mediterranean Europe. This supports a scenario in which the genetic pool of Mediterranean Europe was partly a result of Late Glacial expansions from a Near Eastern refuge, and that this formed an important source pool for subsequent Neolithic expansions into the rest of Europe.


Assuntos
DNA Antigo/análise , DNA Mitocondrial/análise , Variação Genética , Genoma Humano , Etnicidade , Europa (Continente) , Efeito Fundador , Haplótipos , Humanos , Região do Mediterrâneo , Oriente Médio , População Branca
15.
Proc Natl Acad Sci U S A ; 110(35): 14308-13, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940335

RESUMO

In this study we evaluated migration models to the Americas by using the information contained in native mitochondrial genomes (mitogenomes) from North America. Molecular and phylogeographic analyses of B2a mitogenomes, which are absent in Eskimo-Aleut and northern Na-Dene speakers, revealed that this haplogroup arose in North America ∼11-13 ka from one of the founder Paleo-Indian B2 mitogenomes. In contrast, haplogroup A2a, which is typical of Eskimo-Aleuts and Na-Dene, but also present in the easternmost Siberian groups, originated only 4-7 ka in Alaska, led to the first Paleo-Eskimo settlement of northern Canada and Greenland, and contributed to the formation of the Na-Dene gene pool. However, mitogenomes also show that Amerindians from northern North America, without any distinction between Na-Dene and non-Na-Dene, were heavily affected by an additional and distinctive Beringian genetic input. In conclusion, most mtDNA variation (along the double-continent) stems from the first wave from Beringia, which followed the Pacific coastal route. This was accompanied or followed by a second inland migratory event, marked by haplogroups X2a and C4c, which affected all Amerindian groups of Northern North America. Much later, the ancestral A2a carriers spread from Alaska, undertaking both a westward migration to Asia and an eastward expansion into the circumpolar regions of Canada. Thus, the first American founders left the greatest genetic mark but the original maternal makeup of North American Natives was subsequently reshaped by additional streams of gene flow and local population dynamics, making a three-wave view too simplistic.


Assuntos
Emigração e Imigração , Migração Humana , Indígenas Norte-Americanos/genética , Genoma Humano , Humanos
16.
BMC Genomics ; 16: 70, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25757516

RESUMO

BACKGROUND: Distinct, partly competing, "waves" have been proposed to explain human migration in(to) today's Island Southeast Asia and Australia based on genetic (and other) evidence. The paucity of high quality and high resolution data has impeded insights so far. In this study, one of the first in a forensic environment, we used the Ion Torrent Personal Genome Machine (PGM) for generating complete mitogenome sequences via stand-alone massively parallel sequencing and describe a standard data validation practice. RESULTS: In this first representative investigation on the mitochondrial DNA (mtDNA) variation of East Timor (Timor-Leste) population including >300 individuals, we put special emphasis on the reconstruction of the initial settlement, in particular on the previously poorly resolved haplogroup P1, an indigenous lineage of the Southwest Pacific region. Our results suggest a colonization of southern Sahul (Australia) >37 kya, limited subsequent exchange, and a parallel incubation of initial settlers in northern Sahul (New Guinea) followed by westward migrations <28 kya. CONCLUSIONS: The temporal proximity and possible coincidence of these latter dispersals, which encompassed autochthonous haplogroups, with the postulated "later" events of (South) East Asian origin pinpoints a highly dynamic migratory phase.


Assuntos
DNA Mitocondrial/genética , Migração Humana/história , Filogenia , Povo Asiático/genética , Austrália , Cromossomos Humanos Y/genética , DNA Mitocondrial/história , Feminino , Geografia , Haplótipos/genética , História Antiga , Humanos , Masculino , Dados de Sequência Molecular , Timor-Leste
17.
Am J Hum Genet ; 90(4): 675-84, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22482806

RESUMO

Mutational events along the human mtDNA phylogeny are traditionally identified relative to the revised Cambridge Reference Sequence, a contemporary European sequence published in 1981. This historical choice is a continuous source of inconsistencies, misinterpretations, and errors in medical, forensic, and population genetic studies. Here, after having refined the human mtDNA phylogeny to an unprecedented level by adding information from 8,216 modern mitogenomes, we propose switching the reference to a Reconstructed Sapiens Reference Sequence, which was identified by considering all available mitogenomes from Homo neanderthalensis. This "Copernican" reassessment of the human mtDNA tree from its deepest root should resolve previous problems and will have a substantial practical and educational influence on the scientific and public perception of human evolution by clarifying the core principles of common ancestry for extant descendants.


Assuntos
DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Filogenia , Animais , Sequência de Bases , Evolução Biológica , Bases de Dados Genéticas , Variação Genética , Haplótipos , Humanos , Dados de Sequência Molecular , Mutação , Homem de Neandertal/genética
18.
Am J Hum Genet ; 90(5): 915-24, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22560092

RESUMO

Human populations, along with those of many other species, are thought to have contracted into a number of refuge areas at the height of the last Ice Age. European populations are believed to be, to a large extent, the descendants of the inhabitants of these refugia, and some extant mtDNA lineages can be traced to refugia in Franco-Cantabria (haplogroups H1, H3, V, and U5b1), the Italian Peninsula (U5b3), and the East European Plain (U4 and U5a). Parts of the Near East, such as the Levant, were also continuously inhabited throughout the Last Glacial Maximum, but unlike western and eastern Europe, no archaeological or genetic evidence for Late Glacial expansions into Europe from the Near East has hitherto been discovered. Here we report, on the basis of an enlarged whole-genome mitochondrial database, that a substantial, perhaps predominant, signal from mitochondrial haplogroups J and T, previously thought to have spread primarily from the Near East into Europe with the Neolithic population, may in fact reflect dispersals during the Late Glacial period, ∼19-12 thousand years (ka) ago.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , População Branca/genética , Europa (Continente) , Europa Oriental/epidemiologia , Variação Genética , Genética Populacional , Humanos , Oriente Médio , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
19.
Genome Res ; 22(5): 821-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22454235

RESUMO

Mitochondrial DNA (mtDNA) lineages of macro-haplogroup L (excluding the derived L3 branches M and N) represent the majority of the typical sub-Saharan mtDNA variability. In Europe, these mtDNAs account for <1% of the total but, when analyzed at the level of control region, they show no signals of having evolved within the European continent, an observation that is compatible with a recent arrival from the African continent. To further evaluate this issue, we analyzed 69 mitochondrial genomes belonging to various L sublineages from a wide range of European populations. Phylogeographic analyses showed that ~65% of the European L lineages most likely arrived in rather recent historical times, including the Romanization period, the Arab conquest of the Iberian Peninsula and Sicily, and during the period of the Atlantic slave trade. However, the remaining 35% of L mtDNAs form European-specific subclades, revealing that there was gene flow from sub-Saharan Africa toward Europe as early as 11,000 yr ago.


Assuntos
DNA Mitocondrial/genética , África/etnologia , Emigração e Imigração/história , Europa (Continente) , Evolução Molecular , Haplótipos , História Antiga , Humanos , Dados de Sequência Molecular , Filogenia , Filogeografia , Análise de Componente Principal
20.
Genome Res ; 22(5): 811-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22333566

RESUMO

It is now widely agreed that the Native American founders originated from a Beringian source population ~15-18 thousand years ago (kya) and rapidly populated all of the New World, probably mainly following the Pacific coastal route. However, details about the migration into the Americas and the routes pursued on the continent still remain unresolved, despite numerous genetic, archaeological, and linguistic investigations. To examine the pioneering peopling phase of the South American continent, we screened literature and mtDNA databases and identified two novel mitochondrial DNA (mtDNA) clades, here named D1g and D1j, within the pan-American haplogroup D1. They both show overall rare occurrences but local high frequencies, and are essentially restricted to populations from the Southern Cone of South America (Chile and Argentina). We selected and completely sequenced 43 D1g and D1j mtDNA genomes applying highest quality standards. Molecular and phylogeographic analyses revealed extensive variation within each of the two clades and possibly distinct dispersal patterns. Their age estimates agree with the dating of the earliest archaeological sites in South America and indicate that the Paleo-Indian spread along the entire longitude of the American double continent might have taken even <2000 yr. This study confirms that major sampling and sequencing efforts are mandatory for uncovering all of the most basal variation in the Native American mtDNA haplogroups and for clarification of Paleo-Indian migrations, by targeting, if possible, both the general mixed population of national states and autochthonous Native American groups, especially in South America.


Assuntos
Emigração e Imigração/história , Genoma Mitocondrial , Indígenas Sul-Americanos/genética , Frequência do Gene , Haplótipos , História Antiga , Humanos , Indígenas Sul-Americanos/história , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA