Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(19)2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39409069

RESUMO

Despite the increasing understanding of the pathogenesis of glioblastoma (GBM), treatment options for this tumor remain limited. Recently, the therapeutic potential of natural compounds has attracted great interest. Thus, dietary flavonoids quercetin (QCT) and kaempferol (KMF) were investigated as potential cytostatic agents in GBM. Moreover, the physicochemical properties of QCT and KMF, determining their bioavailability and therapeutic efficiency, were evaluated. We proved that both polyphenols significantly reduced the viability of GBM cells. We also demonstrated that both QCT and KMF evoked the cytotoxic effect in T98G cells via induction of apoptotic cell death as shown by increased activity of caspase 3/7 and caspase 9 together with an overexpression of the cleaved form of PARP. Apoptosis was additionally accompanied by the activation of stress responses in QCT- and KMF-treated cells. Both polyphenols caused oxidative stress and endoplasmic reticulum (ER) stress, as demonstrated by the increased generation of reactive oxygen species (ROS), deregulated expressions of superoxide dismutases (SOD2 and Sod1 on protein and transcriptomic levels, respectively), as well as an overexpression of ERO1α, GRP78, p-JNK, and an up-regulation of Chop, Atf4 and Atf6α genes. The antitumor effect of QCT and KMF was also confirmed in vivo, showing reduced growth of tumor xenografts in the chick chorioallantoic membrane (CAM) experiment. Moreover, electrophoretic light scattering (ELS) was used to measure the zeta potential of cell membranes upon exposition to QCT and KMF. Additionally, on the basis of existing physicochemical data, the drug-likeness score of QCT and KMF was evaluated. Analyses showed that both compounds accomplish Lipinski's Rule of 5, and they both fit into the criteria of good central nervous system (CNS) drugs. Altogether, our data support the idea that QCT and KMF might be plausible candidates for evaluation as therapeutic agents in preclinical models of glioblastoma.


Assuntos
Apoptose , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Glioblastoma , Quempferóis , Quercetina , Quempferóis/farmacologia , Quercetina/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Animais , Apoptose/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Superóxido Dismutase/metabolismo , Antineoplásicos/farmacologia
2.
Cancers (Basel) ; 14(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35625997

RESUMO

BACKGROUND: MET-signaling and midkine (ALK ligand) promote glioma cell maintenance and resistance against anticancer therapies. ALK and c-MET inhibition with crizotinib have a preclinical therapeutic rationale to be tested in newly diagnosed GBM. METHODS: Eligible patients received crizotinib with standard radiotherapy (RT)/temozolomide (TMZ) followed by maintenance with crizotinib. The primary objective was to determine the recommended phase 2 dose (RP2D) in a 3 + 3 dose escalation (DE) strategy and safety evaluation in the expansion cohort (EC). Secondary objectives included progression-free (PFS) and overall survival (OS) and exploratory biomarker analysis. RESULTS: The study enrolled 38 patients. The median age was 52 years (33-76), 44% were male, 44% were MGMT methylated, and three patients had IDH1/2 mutation. In DE, DLTs were reported in 1/6 in the second cohort (250 mg/QD), declaring 250 mg/QD of crizotinib as the RP2D for the EC. In the EC, 9/25 patients (32%) presented grade ≥3 adverse events. The median follow up was 18.7 months (m) and the median PFS was 10.7 m (95% CI, 7.7-13.8), with a 6 m PFS and 12 m PFS of 71.5% and 38.8%, respectively. At the time of this analysis, 1 died without progression and 24 had progressed. The median OS was 22.6 m (95% CI, 14.1-31.1) with a 24 m OS of 44.5%. Molecular biomarkers showed no correlation with efficacy. CONCLUSIONS: The addition of crizotinib to standard RT and TMZ for newly diagnosed GBM was safe and the efficacy was encouraging, warranting prospective validation in an adequately powered, randomized controlled study.

3.
Cancers (Basel) ; 12(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947645

RESUMO

Despite the high frequency of EGFR and TP53 genetic alterations in gliomas, little is known about their crosstalk during tumor progression. Here, we described a mutually exclusive distribution between mutations in these two genes. We found that wild-type p53 gliomas are more aggressive than their mutant counterparts, probably because the former accumulate amplifications and/or mutations in EGFR and show a stronger activation of this receptor. In addition, we identified a series of genes associated with vesicular trafficking of EGFR in p53 wild-type gliomas. Among these genes, TMEM167A showed the strongest implication in overall survival in this group of tumors. In agreement with this observation, inhibition of TMEM167A expression impaired the subcutaneous and the intracranial growth of wild-type p53 gliomas, regardless of the presence of EGFR mutations. In the absence of p53 mutations, TMEM167A knockdown reduced the acidification of intracellular vesicles, affecting the autophagy process and impairing EGFR trafficking and signaling. This effect was mimicked by an inhibitor of the vacuolar ATPase. We propose that the increased aggressiveness of wild-type p53 gliomas might be due to the increase in growth factor signaling activity, which depends on the regulation of vesicular trafficking by TMEM167A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA