Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105755, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364890

RESUMO

XK-related 8 (XKR8), in complex with the transmembrane glycoprotein basigin, functions as a phospholipid scramblase activated by the caspase-mediated cleavage or phosphorylation of its C-terminal tail. It carries a putative phospholipid translocation path of multiple hydrophobic and charged residues in the transmembrane region. It also has a crucial tryptophan at the exoplasmic end of the path that regulates its scrambling activity. We herein investigated the tertiary structure of the human XKR8-basigin complex embedded in lipid nanodiscs at an overall resolution of 3.66 Å. We found that the C-terminal tail engaged in intricate polar and van der Waals interactions with a groove at the cytoplasmic surface of XKR8. These interactions maintained the inactive state of XKR8. Point mutations to disrupt these interactions strongly enhanced the scrambling activity of XKR8, suggesting that the activation of XKR8 is mediated by releasing the C-terminal tail from the cytoplasmic groove. We speculate that the cytoplasmic tail region of XKR8 functions as a plug to prevent the scrambling of phospholipids.


Assuntos
Proteínas Reguladoras de Apoptose , Basigina , Proteínas de Membrana , Proteínas de Transferência de Fosfolipídeos , Humanos , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Basigina/química , Membrana Celular/metabolismo , Lipossomos/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Nanopartículas/química , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos , Conformação Proteica em alfa-Hélice , Imagem Individual de Molécula
2.
Proc Natl Acad Sci U S A ; 119(15): e2123226119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35380894

RESUMO

Cryoelectron microscopy (cryo-EM) was applied to Na+,K+-ATPase (NKA) to determine the structures of two E2P states, one (E2PATP) formed by ATP and Mg2+ in the forward reaction, and the other (E2PPi) formed by inorganic phosphate (Pi) and Mg2+ in the backward reaction, with and without ouabain or istaroxime, representatives of classical and new-generation cardiotonic steroids (CTSs). These two E2P states exhibit different biochemical properties. In particular, K+-sensitive acceleration of the dephosphorylation reaction is not observed with E2PPi, attributed to the presence of a Mg2+ ion in the transmembrane cation binding sites. The cryo-EM structures of NKA demonstrate that the two E2P structures are nearly identical but Mg2+ in the transmembrane binding cavity is identified only in E2PPi, corroborating the idea that it should be denoted as E2PPi·Mg2+. We can now explain why the absence of transmembrane Mg2+ in E2PATP confers the K+ sensitivity in dephosphorylation. In addition, we show that ATP bridges the actuator (A) and nucleotide binding (N) domains, stabilizing the E2PATP state; CTS binding causes hardly any changes in the structure of NKA, both in E2PATP and E2PPi·Mg2+, indicating that the binding mechanism is conformational selection; and istaroxime binds to NKA, extending its aminoalkyloxime group deep into the cation binding site. This orientation is upside down compared to that of classical CTSs with respect to the steroid ring. Notably, mobile parts of NKA are resolved substantially better in the electron microscopy (EM) maps than in previous X-ray structures, including sugars sticking out from the ß-subunit and many phospholipid molecules.


Assuntos
Glicosídeos Cardíacos , Cardiotônicos , Etiocolanolona/análogos & derivados , Ouabaína , ATPase Trocadora de Sódio-Potássio , Trifosfato de Adenosina/metabolismo , Glicosídeos Cardíacos/farmacologia , Cardiotônicos/farmacologia , Cátions/química , Cátions/metabolismo , Microscopia Crioeletrônica , Etiocolanolona/farmacologia , Magnésio/química , Magnésio/metabolismo , Ouabaína/farmacologia , Domínios Proteicos , Sódio/química , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33318128

RESUMO

The sodium pump (Na+, K+-ATPase, NKA) is vital for animal cells, as it actively maintains Na+ and K+ electrochemical gradients across the cell membrane. It is a target of cardiotonic steroids (CTSs) such as ouabain and digoxin. As CTSs are almost unique strong inhibitors specific to NKA, a wide range of derivatives has been developed for potential therapeutic use. Several crystal structures have been published for NKA-CTS complexes, but they fail to explain the largely different inhibitory properties of the various CTSs. For instance, although CTSs are thought to inhibit ATPase activity by binding to NKA in the E2P state, we do not know if large conformational changes accompany binding, as no crystal structure is available for the E2P state free of CTS. Here, we describe crystal structures of the BeF3- complex of NKA representing the E2P ground state and then eight crystal structures of seven CTSs, including rostafuroxin and istaroxime, two new members under clinical trials, in complex with NKA in the E2P state. The conformations of NKA are virtually identical in all complexes with and without CTSs, showing that CTSs bind to a preformed cavity in NKA. By comparing the inhibitory potency of the CTSs measured under four different conditions, we elucidate how different structural features of the CTSs result in different inhibitory properties. The crystal structures also explain K+-antagonism and suggest a route to isoform specific CTSs.


Assuntos
Glicosídeos Cardíacos/química , Glicosídeos Cardíacos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Sódio/química , Animais , Fenômenos Biofísicos , Digoxina/farmacologia , Modelos Moleculares , Conformação Molecular , Ouabaína/farmacologia , Isoformas de Proteínas , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Nature ; 545(7653): 193-198, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28467821

RESUMO

The lipid bilayer has so far eluded visualization by conventional crystallographic methods, severely limiting our understanding of phospholipid- and protein-phospholipid interactions. Here we describe electron density maps for crystals of Ca2+-ATPase in four different states obtained by X-ray solvent contrast modulation. These maps resolve the entire first layer of phospholipids surrounding the transmembrane helices, although less than half of them are hydrogen-bonded to protein residues. Phospholipids follow the movements of associated residues, causing local distortions and changes in thickness of the bilayer. Unexpectedly, the entire protein tilts during the reaction cycle, governed primarily by a belt of Trp residues, to minimize energy costs accompanying the large perpendicular movements of the transmembrane helices. A class of Arg residues extend their side chains through the cytoplasm to exploit phospholipids as anchors for conformational switching. Thus, phospholipid-Arg/Lys and phospholipid-Trp interactions have distinct functional roles in the dynamics of ion pumps and, presumably, membrane proteins in general.


Assuntos
ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Fosfolipídeos/metabolismo , Arginina/metabolismo , Cristalização , Cristalografia por Raios X , Citoplasma/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lisina/metabolismo , Modelos Moleculares , Fosfolipídeos/química , Conformação Proteica , Triptofano/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(31): 18448-18458, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675243

RESUMO

Under physiological conditions, most Ca2+-ATPase (SERCA) molecules bind ATP before binding the Ca2+ transported. SERCA has a high affinity for ATP even in the absence of Ca2+, and ATP accelerates Ca2+ binding at pH values lower than 7, where SERCA is in the E2 state with low-affinity Ca2+-binding sites. Here we describe the crystal structure of SERCA2a, the isoform predominant in cardiac muscle, in the E2·ATP state at 3.0-Å resolution. In the crystal structure, the arrangement of the cytoplasmic domains is distinctly different from that in canonical E2. The A-domain now takes an E1 position, and the N-domain occupies exactly the same position as that in the E1·ATP·2Ca2+ state relative to the P-domain. As a result, ATP is properly delivered to the phosphorylation site. Yet phosphoryl transfer never takes place without the filling of the two transmembrane Ca2+-binding sites. The present crystal structure explains what ATP binding itself does to SERCA and how nonproductive phosphorylation is prevented in E2.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cristalografia por Raios X , Humanos , Miocárdio/metabolismo , Fosforilação , Conformação Proteica , Domínios Proteicos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
6.
J Am Chem Soc ; 144(24): 11019-11032, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35673891

RESUMO

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is a membrane protein on the endoplasmic reticulum (ER) that transports Ca2+ from the cytosol into the ER. As its function is associated with various biological phenomena, SERCA has been recognized as a promising druggable target. Here, we report the second-strongest SERCA-inhibitory compound known to date, which we isolated from the marine cyanobacterium Leptochromothrix valpauliae and named iezoside (1). The structure of iezoside (1) is fundamentally different from that of any other SERCA inhibitor, and its potency is the strongest among marine natural products (Ki 7.1 nM). In this article, we report our comprehensive analysis of iezoside (1), which covers its isolation, structural characterization supported by density functional theory (DFT) calculations and statistical analysis, total synthesis, and clarification of the mode of action of its potent antiproliferative activity (IC50 6.7 ± 0.4 nM against HeLa cells).


Assuntos
Cálcio , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Cálcio/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(50): 12722-12727, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30482857

RESUMO

Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a) pumps two Ca2+ per ATP hydrolyzed from the cytoplasm and two or three protons in the opposite direction. In the E2 state, after transferring Ca2+ into the lumen of sarcoplasmic reticulum, all of the acidic residues that coordinate Ca2+ are thought to be protonated, including the gating residue Glu309. Therefore a Glu309Gln substitution is not expected to significantly perturb the structure. Here we report crystal structures of the Glu309Gln and Glu309Ala mutants of SERCA1a under E2 conditions. The Glu309Gln mutant exhibits, unexpectedly, large structural rearrangements in both the cytoplasmic and transmembrane domains, apparently uncoupling them. However, the structure definitely represents E2 and, together with the help of quantum chemical calculations, allows us to postulate a mechanism for the E2 → E1 transition triggered by deprotonation of Glu309.


Assuntos
Cálcio/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Trifosfato de Adenosina/química , Cristalografia por Raios X , Citoplasma/química , Hidrólise , Domínios Proteicos , Prótons , Retículo Sarcoplasmático/química
8.
Proc Natl Acad Sci U S A ; 115(21): E4833-E4842, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735656

RESUMO

Cohesin is a fundamental protein complex that holds sister chromatids together. Separase protease cleaves a cohesin subunit Rad21/SCC1, causing the release of cohesin from DNA to allow chromosome segregation. To understand the functional organization of cohesin, we employed next-generation whole-genome sequencing and identified numerous extragenic suppressors that overcome either inactive separase/Cut1 or defective cohesin in the fission yeast Schizosaccharomyces pombe Unexpectedly, Cut1 is dispensable if suppressor mutations cause disorders of interfaces among essential cohesin subunits Psm1/SMC1, Psm3/SMC3, Rad21/SCC1, and Mis4/SCC2, the crystal structures of which suggest physical and functional impairment at the interfaces of Psm1/3 hinge, Psm1 head-Rad21, or Psm3 coiled coil-Rad21. Molecular-dynamics analysis indicates that the intermolecular ß-sheets in the cohesin hinge of cut1 suppressor mutants remain intact, but a large mobility change occurs at the coiled coil bound to the hinge. In contrast, suppressors of rad21-K1 occur in either the head ATPase domains or the Psm3 coiled coil that interacts with Rad21. Suppressors of mis4-G1326E reside in the head of Psm3/1 or the intragenic domain of Mis4. These may restore the binding of cohesin to DNA. Evidence is provided that the head and hinge of SMC subunits are proximal, and that they coordinate to form arched coils that can hold or release DNA by altering the angles made by the arched coiled coils. By combining molecular modeling with suppressor sequence analysis, we propose a cohesin structure designated the "hold-and-release" model, which may be considered as an alternative to the prevailing "ring" model.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Cromátides/fisiologia , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , DNA Fúngico/genética , Modelos Moleculares , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fosforilação , Conformação Proteica , Subunidades Proteicas , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Supressão Genética , Coesinas
9.
J Biol Chem ; 293(6): 2195-2205, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29247005

RESUMO

The sodium pump (Na,K-ATPase) in animal cells is vital for actively maintaining ATP hydrolysis-powered Na+ and K+ electrochemical gradients across the cell membrane. These ion gradients drive co- and countertransport and are critical for establishing the membrane potential. It has been an enigma how Na,K-ATPase discriminates between Na+ and K+, despite the pumped ion on each side being at a lower concentration than the other ion. Recent crystal structures of analogs of the intermediate conformations E2·Pi·2K+ and Na+-bound E1∼P·ADP suggest that the dimensions of the respective binding sites in Na,K-ATPase are crucial in determining its selectivity. Here, we found that the selectivity at each membrane face is pH-dependent and that this dependence is unique for each face. Most notable was a strong increase in the specific affinity for K+ at the extracellular face (i.e. E2 conformation) as the pH is lowered from 7.5 to 5. We also observed a smaller increase in affinity for K+ on the cytoplasmic side (E1 conformation), which reduced the selectivity for Na+ Theoretical analysis of the pKa values of ion-coordinating acidic amino acid residues suggested that the face-specific pH dependences and Na+/K+ selectivities may arise from the protonation or ionization of key residues. The increase in K+ selectivity at low pH on the cytoplasmic face, for instance, appeared to be associated with Asp808 protonation. We conclude that changes in the ionization state of coordinating residues in Na,K-ATPase could contribute to altering face-specific ion selectivity.


Assuntos
Concentração de Íons de Hidrogênio , Domínios e Motivos de Interação entre Proteínas , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Ácido Aspártico/metabolismo , Sítios de Ligação , Potássio/metabolismo , Conformação Proteica , Sódio/metabolismo , Especificidade por Substrato
10.
Nature ; 502(7470): 201-6, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24089211

RESUMO

Na(+),K(+)-ATPase pumps three Na(+) ions out of cells in exchange for two K(+) taken up from the extracellular medium per ATP molecule hydrolysed, thereby establishing Na(+) and K(+) gradients across the membrane in all animal cells. These ion gradients are used in many fundamental processes, notably excitation of nerve cells. Here we describe 2.8 Å-resolution crystal structures of this ATPase from pig kidney with bound Na(+), ADP and aluminium fluoride, a stable phosphate analogue, with and without oligomycin that promotes Na(+) occlusion. These crystal structures represent a transition state preceding the phosphorylated intermediate (E1P) in which three Na(+) ions are occluded. Details of the Na(+)-binding sites show how this ATPase functions as a Na(+)-specific pump, rejecting K(+) and Ca(2+), even though its affinity for Na(+) is low (millimolar dissociation constant). A mechanism for sequential, cooperative Na(+) binding can now be formulated in atomic detail.


Assuntos
Modelos Moleculares , ATPase Trocadora de Sódio-Potássio/química , Sódio/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Rim/enzimologia , Estrutura Terciária de Proteína , Suínos
11.
Nature ; 495(7440): 260-4, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23455422

RESUMO

P-type ATPases are ATP-powered ion pumps that establish ion concentration gradients across biological membranes, and are distinct from other ATPases in that the reaction cycle includes an autophosphorylation step. The best studied is Ca(2+)-ATPase from muscle sarcoplasmic reticulum (SERCA1a), a Ca(2+) pump that relaxes muscle cells after contraction, and crystal structures have been determined for most of the reaction intermediates. An important outstanding structure is that of the E1 intermediate, which has empty high-affinity Ca(2+)-binding sites ready to accept new cytosolic Ca(2+). In the absence of Ca(2+) and at pH 7 or higher, the ATPase is predominantly in E1, not in E2 (low affinity for Ca(2+)), and if millimolar Mg(2+) is present, one Mg(2+) is expected to occupy one of the Ca(2+)-binding sites with a millimolar dissociation constant. This Mg(2+) accelerates the reaction cycle, not permitting phosphorylation without Ca(2+) binding. Here we describe the crystal structure of native SERCA1a (from rabbit) in this E1·Mg(2+) state at 3.0 Å resolution in addition to crystal structures of SERCA1a in E2 free from exogenous inhibitors, and address the structural basis of the activation signal for phosphoryl transfer. Unexpectedly, sarcolipin, a small regulatory membrane protein of Ca(2+)-ATPase, is bound, stabilizing the E1·Mg(2+) state. Sarcolipin is a close homologue of phospholamban, which is a critical mediator of ß-adrenergic signal in Ca(2+) regulation in heart (for reviews, see, for example, refs 8-10), and seems to play an important role in muscle-based thermogenesis. We also determined the crystal structure of recombinant SERCA1a devoid of sarcolipin, and describe the structural basis of inhibition by sarcolipin/phospholamban. Thus, the crystal structures reported here fill a gap in the structural elucidation of the reaction cycle and provide a solid basis for understanding the physiological regulation of the calcium pump.


Assuntos
Magnésio/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteolipídeos/química , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/farmacologia , Membrana Celular/metabolismo , Cristalografia por Raios X , Magnésio/química , Magnésio/farmacologia , Modelos Moleculares , Proteínas Musculares/farmacologia , Fosforilação , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Proteolipídeos/farmacologia , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores
12.
Proc Natl Acad Sci U S A ; 112(11): 3368-73, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25730881

RESUMO

Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase.


Assuntos
ATPases Transportadoras de Cálcio/química , Catalase/química , Cristalografia por Raios X/métodos , Elétrons , Modelos Moleculares , Animais , Bovinos , Eletricidade Estática
13.
J Biol Chem ; 290(8): 4829-4842, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25533463

RESUMO

The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase. (a) Thermal stability of the Na,K-ATPase depends crucially on a specific interaction with 18:0/18:1 phosphatidylserine (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-L-serine; SOPS) and cholesterol, which strongly amplifies stabilization. We show here that cholesterol associates with SOPS, FXYD1, and the α subunit between trans-membrane segments αTM8 and -10 to stabilize the protein. (b) Polyunsaturated neutral lipids stimulate Na,K-ATPase turnover by >60%. A screen of the lipid specificity showed that 18:0/20:4 and 18:0/22:6 phosphatidylethanolamine (PE) are the optimal phospholipids for this effect. (c) Saturated phosphatidylcholine and sphingomyelin, but not saturated phosphatidylserine or PE, inhibit Na,K-ATPase activity by 70-80%. This effect depends strongly on the presence of cholesterol. Analysis of the Na,K-ATPase activity and E1-E2 conformational transitions reveals the kinetic mechanisms of these effects. Both stimulatory and inhibitory lipids poise the conformational equilibrium toward E2, but their detailed mechanisms of action are different. PE accelerates the rate of E1 → E2P but does not affect E2(2K)ATP → E13NaATP, whereas sphingomyelin inhibits the rate of E2(2K)ATP → E13NaATP, with very little effect on E1 → E2P. We discuss these lipid effects in relation to recent crystal structures of Na,K-ATPase and propose that there are three separate sites for the specific lipid interactions, with potential physiological roles to regulate activity and stability of the pump.


Assuntos
Colesterol/química , Proteínas de Membrana/química , Fosfatidilserinas/química , Fosfolipídeos/química , Fosfoproteínas/química , ATPase Trocadora de Sódio-Potássio/química , Colesterol/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
14.
Biochim Biophys Acta ; 1852(10 Pt A): 2042-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26170059

RESUMO

Myotonic dystrophy type 1 (DM1) is a genetic disorder in which multiple genes are aberrantly spliced. Sarco/endoplasmic reticulum Ca(2+)-ATPase 1 (SERCA1) is one of these genes, and it encodes a P-type ATPase. SERCA1 transports Ca(2+) from the cytosol to the lumen, and is involved in muscular relaxation. It has two splice variants (SERCA1a and SERCA1b) that differ in the last eight amino acids, and the contribution of these variants to DM1 pathology is unclear. Here, we show that SERCA1b protein is highly expressed in DM1 muscle tissue, mainly localised at fast twitch fibres. Additionally, when SERCA1a and SERCA1b were overexpressed in cells, we found that the ATPase and Ca(2+) uptake activity of SERCA1a was almost double that of SERCA1b. Although the affinity for both ATP and Ca(2+) was similar between the two variants, SERCA1b was more sensitive to the inner microsomal environment. Thus, we hypothesise that aberrant expression of SERCA1b in DM1 patients is the cause of abnormal intracellular Ca(2+) homeostasis.

15.
Bioorg Med Chem ; 23(2): 328-39, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25515955

RESUMO

Human sirtuin 2 (SIRT2) is an attractive target molecule for development of drugs to treat neurodegenerative diseases and cancer, because SIRT2 inhibitors have a protective effect against neurodegeneration and an anti-proliferative effect on cancer stem cells. We designed and synthesized a series of benzamide derivatives as SIRT2 inhibitor candidates. Among them, compound 17k showed the most potent SIRT2-inhibitory activity (IC50=0.60µM), with more than 150-fold selectivity over SIRT1 and SIRT3 isoforms (IC50 >100µM).


Assuntos
Benzamidas/química , Desenho de Fármacos , Inibidores de Histona Desacetilases/síntese química , Sirtuína 2/antagonistas & inibidores , Benzamidas/síntese química , Benzamidas/metabolismo , Sítios de Ligação , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Sirtuína 3/antagonistas & inibidores , Sirtuína 3/metabolismo , Relação Estrutura-Atividade
16.
Nature ; 459(7245): 446-50, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19458722

RESUMO

Sodium-potassium ATPase is an ATP-powered ion pump that establishes concentration gradients for Na(+) and K(+) ions across the plasma membrane in all animal cells by pumping Na(+) from the cytoplasm and K(+) from the extracellular medium. Such gradients are used in many essential processes, notably for generating action potentials. Na(+), K(+)-ATPase is a member of the P-type ATPases, which include sarcoplasmic reticulum Ca(2+)-ATPase and gastric H(+), K(+)-ATPase, among others, and is the target of cardiac glycosides. Here we describe a crystal structure of this important ion pump, from shark rectal glands, consisting of alpha- and beta-subunits and a regulatory FXYD protein, all of which are highly homologous to human ones. The ATPase was fixed in a state analogous to E2.2K(+).P(i), in which the ATPase has a high affinity for K(+) and still binds P(i), as in the first crystal structure of pig kidney enzyme at 3.5 A resolution. Clearly visualized now at 2.4 A resolution are coordination of K(+) and associated water molecules in the transmembrane binding sites and a phosphate analogue (MgF(4)(2-)) in the phosphorylation site. The crystal structure shows that the beta-subunit has a critical role in K(+) binding (although its involvement has previously been suggested) and explains, at least partially, why the homologous Ca(2+)-ATPase counter-transports H(+) rather than K(+), despite the coordinating residues being almost identical.


Assuntos
ATPase Trocadora de Sódio-Potássio/química , Animais , Sítios de Ligação , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Cristalografia por Raios X , Fluoretos/metabolismo , Humanos , Compostos de Magnésio/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Potássio/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Glândula de Sal/enzimologia , Tubarões , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
17.
J Biol Chem ; 288(9): 6602-16, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23341448

RESUMO

The Na,K-ATPase is specifically inhibited by cardiotonic steroids (CTSs) like digoxin and is of significant therapeutic value in the treatment of congestive heart failure and arrhythmia. Recently, new interest has arisen in developing Na,K-ATPase inhibitors as anticancer agents. In the present study, we compare the potency and rate of inhibition as well as the reactivation of enzyme activity following inhibition by various cardiac glycosides and their aglycones at different pH values using shark Na,K-ATPase stabilized in the E2MgPi or in the E2BeFx conformations. The effects of the number and nature of various sugar residues as well as changes in the positions of hydroxyl groups on the ß-side of the steroid core of cardiotonic steroids were investigated by comparing various cardiac glycoside compounds like ouabain, digoxin, digitoxin, and gitoxin with their aglycones. The results confirm our previous hypothesis that CTS binds primarily to the E2-P ground state through an extracellular access channel and that binding of extracellular Na(+) ions to K(+) binding sites relieved the CTS inhibition. This reactivation depended on the presence or absence of the sugar moiety on the CTS, and a single sugar is enough to impede reactivation. Finally, increasing the number of hydroxyl groups of the steroid was sterically unfavorable and was found to decrease the inhibitory potency and to confer high pH sensitivity, depending on their position on the steroid ß-face. The results are discussed with reference to the recent crystal structures of Na,K-ATPase in the unbound and ouabain-bound states.


Assuntos
Glicosídeos Cardíacos/química , Inibidores Enzimáticos/química , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/química , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Squalus acanthias , Animais , Estabilidade Enzimática/efeitos dos fármacos , Proteínas de Peixes/metabolismo , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , ATPase Trocadora de Sódio-Potássio/metabolismo
18.
J Biol Chem ; 288(14): 10073-10081, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23430748

RESUMO

Membrane proteins interact with phospholipids either via an annular layer surrounding the transmembrane segments or by specific lipid-protein interactions. Although specifically bound phospholipids are observed in many crystal structures of membrane proteins, their roles are not well understood. Na,K-ATPase is highly dependent on acid phospholipids, especially phosphatidylserine, and previous work on purified detergent-soluble recombinant Na,K-ATPase showed that phosphatidylserine stabilizes and specifically interacts with the protein. Most recently the phosphatidylserine binding site has been located between transmembrane segments of αTM8-10 and the FXYD protein. This paper describes stimulation of Na,K-ATPase activity of the purified human α1ß1 or α1ß1FXYD1 complexes by neutral phospholipids, phosphatidylcholine, or phosphatidylethanolamine. In the presence of phosphatidylserine, soy phosphatidylcholine increases the Na,K-ATPase turnover rate from 5483 ± 144 to 7552 ± 105 (p < 0.0001). Analysis of α1ß1FXYD1 complexes prepared with native or synthetic phospholipids shows that the stimulatory effect is structurally selective for neutral phospholipids with polyunsaturated fatty acyl chains, especially dilinoleoyl phosphatidylcholine or phosphatidylethanolamine. By contrast to phosphatidylserine, phosphatidylcholine or phosphatidylethanolamine destabilizes the Na,K-ATPase. Structural selectivity for stimulation of Na,K-ATPase activity and destabilization by neutral phospholipids distinguish these effects from the stabilizing effects of phosphatidylserine and imply that the phospholipids bind at distinct sites. A re-examination of electron densities of shark Na,K-ATPase is consistent with two bound phospholipids located between transmembrane segments αTM8-10 and TMFXYD (site A) and between TM2, -4, -6, -and 9 (site B). Comparison of the phospholipid binding pockets in E2 and E1 conformations suggests a possible mechanism of stimulation of Na,K-ATPase activity by the neutral phospholipid.


Assuntos
Regulação Enzimológica da Expressão Gênica , Lipídeos/química , Fosfolipídeos/química , ATPase Trocadora de Sódio-Potássio/química , Animais , Sítios de Ligação , Bovinos , Elétrons , Humanos , Proteínas de Membrana/química , Modelos Moleculares , Conformação Molecular , Fosfatidiletanolaminas/química , Fosfoproteínas/química , Ligação Proteica , Proteínas Recombinantes/química , Glycine max/metabolismo , Suínos , Temperatura , Fatores de Tempo
19.
Proc Natl Acad Sci U S A ; 108(5): 1833-8, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21239683

RESUMO

Trinitrophenyl derivatives of adenine nucleotides are widely used for probing ATP-binding sites. Here we describe crystal structures of Ca(2+)-ATPase, a representative P-type ATPase, in the absence of Ca(2+) with bound ATP, trinitrophenyl-ATP, -ADP, and -AMP at better than 2.4-Šresolution, stabilized with thapsigargin, a potent inhibitor. These crystal structures show that the binding mode of the trinitrophenyl derivatives is distinctly different from the parent adenine nucleotides. The adenine binding pocket in the nucleotide binding domain of Ca(2+)-ATPase is now occupied by the trinitrophenyl group, and the side chains of two arginines sandwich the adenine ring, accounting for the much higher affinities of the trinitrophenyl derivatives. Trinitrophenyl nucleotides exhibit a pronounced fluorescence in the E2P ground state but not in the other E2 states. Crystal structures of the E2P and E2 ∼ P analogues of Ca(2+)-ATPase with bound trinitrophenyl-AMP show that different arrangements of the three cytoplasmic domains alter the orientation and water accessibility of the trinitrophenyl group, explaining the origin of "superfluorescence." Thus, the crystal structures demonstrate that ATP and its derivatives are highly adaptable to a wide range of site topologies stabilized by a variety of interactions.


Assuntos
Nucleotídeos de Adenina/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Trinitrobenzenos/metabolismo , Cristalização , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica
20.
EMBO J ; 28(12): 1782-91, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19478797

RESUMO

Heavy metal pumps constitute a large subgroup in P-type ion-transporting ATPases. One of the outstanding features is that the nucleotide binding N-domain lacks residues critical for ATP binding in other well-studied P-type ATPases. Instead, they possess an HP-motif and a Gly-rich sequence in the N-domain, and their mutations impair ATP binding. Here, we describe 1.85 A resolution crystal structures of the P- and N-domains of CopA, an archaeal Cu(+)-transporting ATPase, with bound nucleotides. These crystal structures show that CopA recognises the adenine ring completely differently from other P-type ATPases. The crystal structure of the His462Gln mutant, in the HP-motif, a disease-causing mutation in human Cu(+)-ATPases, shows that the Gln side chain mimics the imidazole ring, but only partially, explaining the reduction in ATPase activity. These crystal structures lead us to propose a role of the His and a mechanism for removing Mg(2+) from ATP before phosphoryl transfer.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/enzimologia , Proteínas de Transporte de Cátions/metabolismo , Substituição de Aminoácidos , Proteínas Arqueais/química , Sítios de Ligação , ATPases Transportadoras de Cobre , Cristalografia por Raios X , Transporte de Íons , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA