Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Chem Soc ; 138(6): 1955-61, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26780974

RESUMO

Sodium batteries have seen a resurgence of interest from researchers in recent years, owing to numerous favorable properties including cost and abundance. Here we examine the feasibility of studying this battery chemistry with in situ NMR, focusing on Na metal anodes. Quantification of the NMR signal indicates that Na metal deposits with a morphology associated with an extremely high surface area, the deposits continually accumulating, even in the case of galvanostatic cycling. Two regimes for the electrochemical cycling of Na metal are apparent that have implications for the use of Na anodes: at low currents, the Na deposits are partially removed on reversing the current, while at high currents, there is essentially no removal of the deposits in the initial stages. At longer times, high currents show a significantly greater accumulation of deposits during cycling, again indicating a much lower efficiency of removal of these structures when the current is reversed.

2.
J Am Chem Soc ; 138(30): 9405-8, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27404908

RESUMO

Experimental techniques that probe the local environment around O in paramagnetic Li-ion cathode materials are essential in order to understand the complex phase transformations and O redox processes that can occur during electrochemical delithiation. While Li NMR is a well-established technique for studying the local environment of Li ions in paramagnetic battery materials, the use of (17)O NMR in the same materials has not yet been reported. In this work, we present a combined (17)O NMR and hybrid density functional theory study of the local O environments in Li2MnO3, a model compound for layered Li-ion batteries. After a simple (17)O enrichment procedure, we observed five resonances with large (17)O shifts ascribed to the Fermi contact interaction with directly bonded Mn(4+) ions. The five peaks were separated into two groups with shifts at 1600 to 1950 ppm and 2100 to 2450 ppm, which, with the aid of first-principles calculations, were assigned to the (17)O shifts of environments similar to the 4i and 8j sites in pristine Li2MnO3, respectively. The multiple O environments in each region were ascribed to the presence of stacking faults within the Li2MnO3 structure. From the ratio of the intensities of the different (17)O environments, the percentage of stacking faults was found to be ca. 10%. The methodology for studying (17)O shifts in paramagnetic solids described in this work will be useful for studying the local environments of O in a range of technologically interesting transition metal oxides.

3.
J Am Chem Soc ; 137(48): 15209-16, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26524078

RESUMO

Lithium dendrite growth in lithium ion and lithium rechargeable batteries is associated with severe safety concerns. To overcome these problems, a fundamental understanding of the growth mechanism of dendrites under working conditions is needed. In this work, in situ (7)Li magnetic resonance (MRI) is performed on both the electrolyte and lithium metal electrodes in symmetric lithium cells, allowing the behavior of the electrolyte concentration gradient to be studied and correlated with the type and rate of microstructure growth on the Li metal electrode. For this purpose, chemical shift (CS) imaging of the metal electrodes is a particularly sensitive diagnostic method, enabling a clear distinction to be made between different types of microstructural growth occurring at the electrode surface and the eventual dendrite growth between the electrodes. The CS imaging shows that mossy types of microstructure grow close to the surface of the anode from the beginning of charge in every cell studied, while dendritic growth is triggered much later. Simple metrics have been developed to interpret the MRI data sets and to compare results from a series of cells charged at different current densities. The results show that at high charge rates, there is a strong correlation between the onset time of dendrite growth and the local depletion of the electrolyte at the surface of the electrode observed both experimentally and predicted theoretical (via the Sand's time model). A separate mechanism of dendrite growth is observed at low currents, which is not governed by salt depletion in the bulk liquid electrolyte. The MRI approach presented here allows the rate and nature of a process that occurs in the solid electrode to be correlated with the concentrations of components in the electrolyte.

4.
Faraday Discuss ; 176: 49-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25591456

RESUMO

(19)F NMR spectroscopy has been used to study the local environments of anions in supercapacitor electrodes and to quantify changes in the populations of adsorbed species during charging. In the absence of an applied potential, anionic species adsorbed within carbon micropores (in-pore) are distinguished from those in large mesopores and spaces between particles (ex-pore) by a characteristic nucleus-independent chemical shift (NICS). Adsorption experiments and two-dimensional exchange experiments confirm that anions are in dynamic equilibrium between the in- and ex-pore environments with an exchange rate in the order of tens of Hz. (19)F in situ NMR spectra recorded at different charge states reveal changes in the intensity and NICS of the in-pore resonances, which are interpreted in term of changes in the population and local environments of the adsorbed anions that arise due to the charge-storage process. A comparison of the results obtained for a range of electrolytes reveals that several factors influence the charging mechanism. For a tetraethylammonium tetrafluoroborate electrolyte, positive polarisation of the electrode is found to proceed by anion adsorption at a low concentration, whereas increased ion exchange plays a more important role for a high concentration electrolyte. In contrast, negative polarization of the electrode proceeds by cation adsorption for both concentrations. For a tetrabutylammonium tetrafluoroborate electrolyte, anion expulsion is observed in the negative charging regime; this is attributed to the reduced mobility and/or access of the larger cations inside the pores, which forces the expulsion of anions in order to build up ionic charge. Significant anion expulsion is also observed in the negative charging regime for alkali metal bis(trifluoromethane)sulfonimide electrolytes, suggesting that more subtle factors also affect the charging mechanism.

5.
J Am Chem Soc ; 135(50): 18968-80, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24274637

RESUMO

Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance (NMR) methodologies to study changes at the electrode-electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations.

6.
Nat Mater ; 11(4): 311-5, 2012 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-22327745

RESUMO

There is an ever-increasing need for advanced batteries for portable electronics, to power electric vehicles and to facilitate the distribution and storage of energy derived from renewable energy sources. The increasing demands on batteries and other electrochemical devices have spurred research into the development of new electrode materials that could lead to better performance and lower cost (increased capacity, stability and cycle life, and safety). These developments have, in turn, given rise to a vigorous search for the development of robust and reliable diagnostic tools to monitor and analyse battery performance, where possible, in situ. Yet, a proven, convenient and non-invasive technology, with an ability to image in three dimensions the chemical changes that occur inside a full battery as it cycles, has yet to emerge. Here we demonstrate techniques based on magnetic resonance imaging, which enable a completely non-invasive visualization and characterization of the changes that occur on battery electrodes and in the electrolyte. The current application focuses on lithium-metal batteries and the observation of electrode microstructure build-up as a result of charging. The methods developed here will be highly valuable in the quest for enhanced battery performance and in the evaluation of other electrochemical devices.

7.
Phys Chem Chem Phys ; 15(20): 7722-30, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23595510

RESUMO

A detailed understanding of ion adsorption within porous carbon is key to the design and improvement of electric double-layer capacitors, more commonly known as supercapacitors. In this work nuclear magnetic resonance (NMR) spectroscopy is used to study ion adsorption in porous carbide-derived carbons. These predominantly microporous materials have a tuneable pore size which enables a systematic study of the effect of pore size on ion adsorption. Multinuclear NMR experiments performed on the electrolyte anions and cations reveal two main environments inside the carbon. In-pore ions (observed at low frequencies) are adsorbed inside the pores, whilst ex-pore ions (observed at higher frequencies) are not adsorbed and are in large reservoirs of electrolyte between carbon particles. All our experiments were carried out in the absence of an applied electrical potential in order to assess the mechanisms related to ion adsorption without the contribution of electrosorption. Our results indicate similar adsorption behaviour for anions and cations. Furthermore, we probe the effect of sample orientation, which is shown to have a marked effect on the NMR spectra. Finally, we show that a (13)C →(1)H cross polarisation experiment enables magnetisation transfer from the carbon architecture to the adsorbed species, allowing selective observation of the adsorbed ions and confirming our spectral assignments.


Assuntos
Carbono/química , Adsorção , Íons/química , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Porosidade , Propriedades de Superfície
8.
Solid State Nucl Magn Reson ; 42: 62-70, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22381594

RESUMO

The application of in situ nuclear magnetic resonance (NMR) to investigate batteries in real time (i.e., as they are cycling) provides fruitful insight into the electrochemical structural changes that occur in the battery. A major challenge for in situ static NMR spectroscopy of a battery is, however, to separate the resonances from the different components. Many resonances overlap and are broadened since spectra are acquired, to date, in static mode. Spectral analysis is also complicated by bulk magnetic susceptibility (BMS) effects. Here we describe some of the BMS effects that arise in lithium ion battery (LIB) materials and provide an outline of some of the practical considerations associated with the application of in situ NMR spectroscopy to study structural changes in energy materials.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Lítio/química , Espectroscopia de Ressonância Magnética/métodos , Teste de Materiais/métodos , Transferência de Energia , Desenho de Equipamento , Íons , Campos Magnéticos
9.
J Am Chem Soc ; 133(48): 19270-3, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22044066

RESUMO

(11)B NMR spectroscopy has been used to investigate the sorption of BF(4)(-) anions on a highly porous, high surface area carbon, and different binding sites have been identified. By implementing in situ NMR approaches, the migration of ions between the electrodes of the supercapacitors and changes in the nature of ion binding to the surface have been observed in real time.

10.
J Chem Phys ; 133(5): 054501, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20707536

RESUMO

The Carr-Purcell-Meiboom-Gill (CPMG) experiment has gained popularity in solid-state NMR as a method for enhancing sensitivity for anisotropically broadened spectra of both spin 1/2 and half integer quadrupolar nuclei. Most commonly, the train of CPMG echoes is Fourier transformed directly, which causes the NMR powder pattern to break up into a series of sidebands, sometimes called "spikelets." Larger sensitivity enhancements are observed as the delay between the pi pulses is shortened. As the duration between the pi pulses is shortened, however, the echoes become truncated and information about the nuclear spin interactions is lost. We explored the relationship between enhanced sensitivity and loss of information as a function of the product Omega 2tau, where Omega is the span of the anisotropic lineshape and 2tau is the pi pulse spacing. For a lineshape dominated by the nuclear shielding anisotropy, we found that the minimum uncertainty in the tensor values is obtained using Omega 2tau values in the range Omega 2tau approximately 12(-1)(+6) and Omega 2tau approximately 9(-3)(+3) for eta(s)=0 and eta(s)=1, respectively. For an anisotropic second-order quadrupolar central transition lineshape under magic-angle spinning (MAS), the optimum range of Omega 2tau approximately 9(-2)(+3) was found. Additionally, we show how the Two-dimensional One Pulse (TOP) like processing approach can be used to eliminate the cumbersome sideband pattern lineshape and recover a more familiar lineshape that is easily analyzed with conventional lineshape simulation algorithms.


Assuntos
Chumbo/química , Espectroscopia de Ressonância Magnética , Nitratos/química , Algoritmos
11.
J Am Chem Soc ; 130(33): 10858-9, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18652455

RESUMO

Chemical shift anisotropy (CSA) has been an invaluable probe of structure and dynamics for a variety of systems in NMR spectroscopy. Unfortunately, the presence of strong quadrupolar couplings has severely limited the ability to measure CSA in nuclei with spins I > 1/2. Here we show that these two interactions can be refocused at different times in a 2D multiple-quantum NMR experiment on polycrystalline samples. Combining this experiment with appropriate affine transformations allows these interactions to be cleanly separated into orthogonal dimensions. The 1D projection onto each axis can be fit to extract the respective principal tensor components. These components can then be used to fit the 2D spectrum for the relative orientation between the CSA and quadrupolar-coupling tensors. The necessary affine transformation parameters are given for all possible I values. Illustrative examples of spectra and analyses are given for 63Cu in K3[Cu(CN)4], 59Co in K3[Co(CN)6], and 87Rb in RbCrO4.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Anisotropia , Cromatos/química , Cobalto/química , Cobre/química , Cianetos/química , Potássio/química , Teoria Quântica , Padrões de Referência , Rubídio/química
12.
J Magn Reson ; 265: 200-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26938943

RESUMO

We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep (7)Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, (31)P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. (31)P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000 ppm. The experiments show a significant shift and changes in the number as well as intensities of (31)P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC (23)Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and electrolyte peak, respectively. Thus, interleaved measurements with different optimal NMR set-ups for the metal and electrolyte, respectively, became possible. This allowed the formation of different Na metal species as well as a quantification of electrolyte consumption during the electrochemical experiment to be monitored. The new approach is likely to benefit a further understanding of Na-ion battery chemistries.

13.
Nat Commun ; 5: 4536, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25082481

RESUMO

The last decade has seen an intensified interest in the development and use of electrochemical double-layer capacitors, fuelled by the availability of new electrode materials. The use of nanoporous carbons, in particular, with extremely high surface areas for ion adsorption has enabled the development of working devices with significantly increased capacitances that have become viable alternatives to lithium-ion batteries in certain applications. An understanding of the charge storage mechanism and the ion dynamics inside the nanopores is only just emerging, with the most compelling evidence coming from simulation. Here we present the first in situ magnetic resonance imaging experiments of electrochemical double-layer capacitors. These experiments overcome the limitations of other techniques and give spatially resolved chemical information about the electrolyte ions in real time for a working capacitor of standard geometry. The results provide insight into the predominant capacitive processes occurring at different states of charge and discharge.

14.
J Magn Reson ; 245: 143-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25036296

RESUMO

While experiments on metals have been performed since the early days of NMR (and DNP), the use of bulk metal is normally avoided. Instead, often powders have been used in combination with low fields, so that skin depth effects could be neglected. Another complicating factor of acquiring NMR spectra or MRI images of bulk metal is the strong signal dependence on the orientation between the sample and the radio frequency (rf) coil, leading to non-intuitive image distortions and inaccurate quantification. Such factors are particularly important for NMR and MRI of batteries and other electrochemical devices. Here, we show results from a systematic study combining rf field calculations with experimental MRI of (7)Li metal to visualize skin depth effects directly and to analyze the rf field orientation effect on MRI of bulk metal. It is shown that a certain degree of selectivity can be achieved for particular faces of the metal, simply based on the orientation of the sample. By combining rf field calculations with bulk magnetic susceptibility calculations accurate NMR spectra can be obtained from first principles. Such analyses will become valuable in many applications involving battery systems, but also metals, in general.

15.
J Magn Reson ; 234: 44-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23838525

RESUMO

To date, in situ nuclear magnetic resonance (NMR) studies of working batteries have been performed in static mode, i.e., in the absence of magic angle spinning (MAS). Thus, it is extremely challenging to apply the method to paramagnetic systems such as the cathodes spinels Li(1+x)Mn(2-x)O4 primarily due to three factors: (1) the resonance lines are broadened severely; (2) spectral analysis is made more complicated by bulk magnetic susceptibility (BMS) effects, which depend on the orientation and shape of the object under investigation; (3) the difficulty in untangling the BMS effects induced by the paramagnetic and metallic components on other (often diamagnetic) components in the system, which result in additional shifts and line broadening. Here we evaluate the orientation-dependence of the BMS effect of Li1.08Mn1.92O4, analyzing the experimental results by using a simple long-distance Li-electron dipolar coupling model. In addition, we discuss the shape and packing density dependence of the BMS effect and its influence on the observed frequencies of other components, such as the Li metal and the electrolyte in the battery. Finally, we show that by taking these effects into account we are able to minimize the BMS induced shift by orienting the cell at a rotation angle, αi=54.7° which facilitates the interpretation of the in situ NMR spectra of a working battery with the paramagnetic Li1.08Mn1.92O4 cathode.

16.
J Magn Reson ; 200(2): 334-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19665404

RESUMO

Central transition (CT) sensitivity enhancement schemes that transfer polarization from satellites to the CT through selective saturation or inversion of neighboring satellite transitions have provided a welcome improvement for magic-angle spinning spectra of half-integer quadrupole nuclei. While many researchers have investigated and developed different methods of creating enhanced CT populations, here we investigate the conversion of these enhanced CT populations into observable CT coherence. We show a somewhat unexpected result that a conversion pulse length optimized for maximum sensitivity on equilibrium populations may not be optimum for an enhanced (non-equilibrium) polarization. Furthermore, CT enhancements can be lost if excessive rf field strength is used to convert this enhanced polarization into CT coherence. While a maximally enhanced CT signal is expected when using a perfectly selective CT conversion pulse, we have found that significant sensitivity loss can occur when using surprisingly low rf field strengths, even for sites with relatively large quadrupole coupling constants. We have systematically investigated these issues, and present some general guidelines and expectations when optimizing the conversion of enhanced (non-equilibrium) CT populations into observable CT coherence.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Simulação por Computador , Sensibilidade e Especificidade , Marcadores de Spin
17.
J Chem Phys ; 128(5): 052318, 2008 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-18266435

RESUMO

Recent methodological advances have made it possible to measure fine structure on the order of a few hertz in the nuclear magnetic resonance (NMR) spectra of quadrupolar nuclei in polycrystalline samples. Since quadrupolar couplings are often a significant fraction of the Zeeman coupling, a complete analysis of such experimental spectra requires a theoretical treatment beyond first-order. For multiple pulse NMR experiments, which may include sample rotation, the traditional density matrix approaches for treating higher-order effects suffer from the constraint that undesired fast oscillations (i.e., multiples of the Zeeman frequency), which arise from allowed overtone transitions, can only be eliminated in numerical simulations by employing sampling rates greater than 2I times the Zeeman frequency. Here, we present a general theoretical approach for arbitrary spin I that implements an analytical "filtering" of undesired fast oscillations in the rotating tilted frame, while still performing an exact diagonalization. Alternatively, this approach can be applied using a perturbation expansion for the eigenvalues and eigenstates, such that arbitrary levels of theory can be explored. The only constraint in this approach is that the Zeeman interaction remains the dominant interaction. Using this theoretical framework, numerical simulations can be implemented without the need for a high sampling rate of observables and with significantly reduced computation times. Additionally, this approach provides a general procedure for focusing on the excitation and detection of both fundamental and overtone transitions. Using this approach we explore higher-order effects on a number of sensitivity and resolution issues with NMR of quadrupolar nuclei.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA